首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Dispersions of multi-walled carbon nanotubes (MWNTs) assisted by surfactant adsorption were prepared for a number of ionic and non-ionic surfactants including sodium 4-dodecylbenzenesulfonate (NaDDBS), hexadecyl(trimethyl)azanium bromide (CTAB), sodium dodecane-1-sulfonate (SDS), Pluronic? F68, Pluronic? F127, and Triton? X-100 to examine the effects of nanotube diameter, surfactant concentration, and pH on nanotube dispersability. Nanotube diameter was found to be an important role in surfactant adsorption rendering single-walled carbon nanotube studies as unreliable in predicting MWNT dispersive behavior. Similar to other reports, increasing surfactant concentrations resulted in a solubility plateau. Quantification of nanotube solubility at these plateaus demonstrated that CTAB is the best surfactant for MWNTs at neutral pH conditions. Deviations from neutral pH demonstrated negligible influence on non-ionic surfactant adsorption. In contrast, both cationic and anionic surfactants were found to be poor dispersing aids for highly acidic solutions while, CTAB remained a good surfactant under strongly basic conditions. These pH dependent results were explained in the context of nanotube surface ionization and Debye length variation.  相似文献   

2.
The interaction of Procaine hydrochloride (PC) with cationic, anionic and non-ionic surfactants; cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and triton X-100, were investigated. The effect of ionic and non-ionic micelles on solubilization of Procaine in aqueous micellar solution of SDS, CTAB and triton X-100 were studied at pH 6.8 and 29°C using absorption spectrophotometry. By using pseudo-phase model, the partition coefficient between the bulk water and micelles, Kx, was calculated. The results showed that the micelles of CTAB enhanced the solubility of Procaine higher than SDS micelles (Kx = 96 and 166 for SDS and CTAB micelles, respectively) but triton X-100 did not enhanced the solubility of drug because of weak interaction with Procaine. From the resulting binding constant for Procaine-ionic surfactants interactions (Kb = 175 and 128 for SDS and CTAB surfactants, respectively), it was concluded that both electrostatic and hydrophobic interactions affect the interaction of surfactants with cationic procaine. Electrostatic interactions have a great role in the binding and consequently distribution of Procaine in micelle/water phases. These interactions for anionic surfactant (SDS) are higher than for cationic surfactant (CTAB). Gibbs free energy of binding and distribution of procaine between the bulk water and studied surfactant micelles were calculated.   相似文献   

3.
4.
The progresses of understanding of the surfactant adsorption at the hydrophilic solid-liquid interface from extensive experimental studies are reviewed here. In this respect the kinetic and equilibrium studies involves anionic, cationic, non-ionic and mixed surfactants at the solid surface from the solution. Kinetics and equilibrium adsorption of surfactants at the solid-liquid interface depend on the nature of surfactants and the nature of the solid surface. Studies have been reported on adsorption kinetics at the solid-liquid interface primarily on the adsorption of non-ionic surfactant on silica and limited studies on cationic surfactant on silica and anionic surfactant on cotton and cellulose. The typical isotherm of surfactants in general, can be subdivided into four regions. Four-regime isotherm was mainly observed for adsorption of ionic surfactant on oppositely charged solid surface and adsorption of non-ionic surfactant on silica surface. Region IV of the adsorption isotherm is commonly a plateau region above the CMC, it may also show a maximum above the CMC. Isotherms of four different regions are discussed in detail. Influences of different parameters such as molecular structure, temperature, salt concentration that are very important in surfactant adsorption are reviewed here. Atomic force microscopy study of different surfactants show the self-assembly and mechanism of adsorption at the solid-liquid interface. Adsorption behaviour and mechanism of different mixed surfactant systems such as anionic-cationic, anionic-non-ionic and cationic-non-ionic are reviewed. Mixture of surface-active materials can show synergistic interactions, which can be manifested as enhanced surface activity, spreading, foaming, detergency and many other phenomena.  相似文献   

5.
We have constructed a model to predict the properties of non-ionic (alkyl-ethylene oxide) (C(n)E(m)) surfactants, both in aqueous solutions and near a silica surface, based upon the self-consistent field theory using the Scheutjens-Fleer discretisation scheme. The system has the pH and the ionic strength as additional control parameters. At high ionic strength, the solvent quality for the surfactant head groups is affected, which changes both the bulk and the adsorption behavior of the surfactant. For example, with increasing ionic strength, the CMC drops and the aggregation increases. Surfactants adsorb above the critical surface association concentration (CSAC). The CSAC is a function of the surfactant and the surface properties. Therefore, the CSAC varies with both the ionic strength and the pH. We predict that with increasing ionic strength, the CSAC will first slightly increase but then drop substantially. The charge on the surface is pH dependent, and as the head groups bind through H-bonding to the silanol groups, the CSAC increases with increasing pH. We focus on adsorption/desorption transitions for the surfactants and compare these to the experimental data. Both the equilibrium predictions and the consequences for the kinetics of adsorption follow experimental findings. Our results show that molecularly realistic models can reveal a much richer interfacial behavior than anticipated from more generic models.  相似文献   

6.
Recently, nanometric ions were shown to adsorb to hydrated neutral surfaces and to bind to the cavities of macrocyclic molecules with an unexpectedly strong affinity arising from a solvent-mediated effect named superchaotropicity. We show here that nano-ions at low concentrations (μm range), similarly to anionic surfactants, induce the spontaneous transformation of a swollen lyotropic lamellar phase of non-ionic surfactant into a vesicle phase. This transition occurs when the neutral lamellae acquire charges, either by adsorption of the nano-ions onto, or by anchoring of the ionic surfactant into the lamellae. In contrast to ionic surfactants, nano-ions strongly dehydrate the neutral surfactant assemblies. As a conclusion, these purely inorganic nanometric ions act as alternatives to the widely used organic ionic surfactants.  相似文献   

7.
Tsubouchi M  Tanaka Y 《Talanta》1984,31(8):633-634
The solvent extraction of non-ionic surfactants with sodium hydroxide and tetraphenylborate has been studied, and a method developed for the determination of non-ionic surfactants by two-phase titration. A hydrophobic indicator system was used. The method is valid only when the concentration of anionic surfactant in the sample solution is lower than 1 x 10(-4)M.  相似文献   

8.
The clouding behavior of tricyclic antidepressant drug imipramine hydrochloride (IMP) in aqueous solution has been studied in presence of surfactants. A pH increase in the presence as well as in the absence of surfactants decreased the CP. Drug molecules become neutral at high pH and therefore head–head repulsion decreases which lead to CP decrease. Addition of non-ionic and cationic surfactants increased the CP whereas anionic surfactants showed a peaked profile. Effect of CTAB/TX-100 at different fixed drug concentrations showed that at all surfactant concentrations the CP value was higher for higher drug concentrations. However, variation of pH produced opposite effect: CP at all CTAB/TX-100 concentrations decreased with increasing pH. All results are interpreted in terms of increase in hydrophobicity or hydrophilicity of micelles on addition of surfactants.  相似文献   

9.
The bebaviour of several different micelar systems (anionic, cationic and non-ionic) on the fluorescence of quinolizinium salts is studied. Important factors, such as pH and ionic strength that influence fluorescence parameters, are discussed. Fourteen quinolizinium salts (benzo and methyl derivatives) are examined as fluorescent probes in micellar media. All of them showed a marked increase of fluorescence intensity when sodium dodecyl sulfate solutions of critical micelle concentration (CMC) are added. The presence of non-ionic surfactants did not change the fluorescent emission of the probes. The emission intensity is much decreased when N-cetyl-N,N,N- trimethylammonium bromide concentrations are above the CMC. Changes in pH ido not significantly affect the fluorescence intensity of the benzo derivatives. Increasing the ionic strength decreases the fluorescence. For 9-cyanobenzo[a]phenanthro [9,10-g] quinolizinium chloride, the spectrum changes when the surfactant concentration is high than the CMC thereforre this compound is considered to be a good fluorescent probe in icell  相似文献   

10.
The surface tension of the spinning solution is an important parameter in the electrospinning process. Surfactants can change the surface tension of the solution. In this paper, four different kinds of surfactants were added into 10 wt% polyvinyl alcohol/water solution. The effect of different surfactants on the solution properties, the morphology of the resulting mats, the thermal performance, and the inner structure of nanofibers were investigated. The results showed that the surface tension of the spinning solution decreased significantly when the surfactant content was less than 1 %. The viscosity and electric conductivity of the solution increased with the increasing of cationic and anionic surfactant content. The fiber diameter of poly(vinyl alcohol) mats remarkably decreased from 405 to 100 nm as the non-ionic surfactant content within the range of 1 % (v/v) increased. Besides that, the surfactant content also had some influence on the thermal performance and inner structure of nanofibers. With the surfactant content increasing, both the heat of fusions and crystallinity increased significantly.  相似文献   

11.
Summary The effect of four surfactants on the determination of nitrite and nitrate has been examined. The method which has been tested for nitrite is based on the formation of an azodye. The results show that cationic and non-ionic surfactants do not interfere with the determination of nitrite while anionic surfactants cause significant interferences, which could be eliminated by treating the water samples with a cationic surfactant.Two methods have been tested for the determination of nitrate in the presence of surfactants. One method is based on the nitration of salicyclic acid, while the other is based on the reduction of nitrate to nitrite. Results for the first method show that the non-ionic surfactant Triton-X causes significant interferences. Cationic and anionic surfactants do not interfere, when their concentration is relatively low. For higher concentrations an increasing interference is observed. Results for the second method show effects similar to those obtained for nitrite.
Wirkung oberflächenaktiver Substanzen auf die Bestimmung von Nitrit und Nitrat in Wasserproben
  相似文献   

12.
表面活性剂对海藻酸钠稀水溶液剪切粘度的影响   总被引:1,自引:0,他引:1  
通过粘度法考察了不同pH值时, 阴离子聚电解质海藻酸钠(NaAlg)与阴离子表面活性剂十二烷基硫酸钠(SDS)、阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)、非离子表面活性剂辛基酚聚氧乙烯醚(TritonX-100)以及它们的复配体系的相互作用. 研究表明, 在酸性条件下, SDS和TritonX-100与NaAlg之间主要是疏水作用, 随着表面活性剂浓度的增加, 体系粘度下降直到基本不变, CTAB与NaAlg主要发生静电作用和疏水作用, 体系粘度随CTAB浓度的增加呈现先上升后下降的趋势. 在实验条件下, TritonX-100浓度为0.05 mmol·L-1时, SDS的加入, 使得NaAlg/TritonX-100体系的零剪切粘度下降, 而CTAB的加入, 在pH=3.0和5.0时, NaAlg/TritonX-100体系的零剪切粘度出现上升, 在pH=6.4时, 该体系零剪切粘度下降.  相似文献   

13.
Fouling of nanofiltration membranes is studied during filtration of aqueous surfactant solutions under different conditions. To this purpose, four typical nanofiltration membranes (Desal51HL, NF270, NTR7450 and NFPES10) and three typical surfactants (nonionic neodol, anionic SDBS and cationic cetrimide) are selected. Fouling is studied as a function of the surfactant concentration, with and without addition of an electrolyte (NaCl), at different pH and when filtering a mixture of surfactants. Adsorption experiments and hydrophobicity measurements (to study the orientation of the surfactants on the membrane surface) are also performed under the different conditions. The least membrane fouling is found for the anionic surfactant SDBS, while for the cationic surfactant cetrimide very low relative fluxes are observed. Neodol shows an intermediate degree of fouling. Both hydrophobic and electrostatic interactions (in the case of ionic surfactants) between the membrane surface and the surfactant explain the degree of adsorption and hence fouling, as membrane fouling is correlated with the amount of adsorbed surfactant. The difference between cetrimide and SDBS becomes especially visible when changing the pH: increasing the pH leads not only to an opposite orientation of the adsorbed surfactants, but also to an opposite trend in adsorbed amount and membrane fouling. This study permits selection of an optimal nanofiltration membrane to recycle wastewater containing surfactants in the carwash industry. The optimal choice would be a hydrophilic membrane with a low molecular weight cut-off and a small negative surface charge at neutral pH. Cationic surfactants in the wastewater should also be avoided as much as possible.  相似文献   

14.
A series of oxidized di(indolyl)arylmethanes (DIAM) with polyaromatic signaling moieties have been designed for monitoring local pH at the interfacial region of surfactant aggregates, such as micelles and vesicles. The oxidized DIAMs show changes in solution color from red to yellow when incorporated in cationic surfactants (at pH 7.4) and yellow to reddish pink when exposed to negatively-charged surfactants (at pH 5.0). The changes in surface charge can influence the interfacial pH (distinct from bulk pH of the medium) of the surfactant aggregates. The mechanistic studies indicate that the red-shifted absorption maxima observed in the presence of anionic amphiphiles (acidic local pH) originated from the protonated species. On the contrary, maxima in the blue region, triggered by positively charged amphiphiles (basic local pH), is attributed to the zwitterionic species. Such prototropic equilibrium affects charge transfer states of the molecules along with their self-assembly properties. Thus, it is evident that probes can predict as well as quantify the local pH change using the pseudophase ion exchange formalism. Also, the probes can detect the presence of anionic amphiphiles even when bound to phospholipid membranes.  相似文献   

15.
The medium (pH, organic solvents, cyclodextrin (CD) or surfactants) effects on the fluorescence of ciprofloxacin hydrochloride (CPFX.HCl) were studied in detail. It is found that the three acid constants of ciprofloxacin (CPFX) are near to each other. Therefore the relation curve between pH and fluorescence intensity has no strident change and keeps relative stable in the pH range of 2-7. When pH was in the range of 5.5-6.0, the fluorescence intensity of CPFX reached the max. The kind and amount of organic solvent added to the luminescent system have various effects. Ethanol quenched fluorescence and the fluorescence excitation wavelength is red shift at first and then blue shift. Acetone has complicated effects on the fluorescence properties of CPFX.HCl solution. The experiment result shows that acetone is really a quencher when its volume content in the system is from 0 to 20%, but when its content is 90%, the signal intensity is unexpectedly one and a half times as much as that of no acetone. This means that there is a strong interaction between the acetone and CPFX; CPFX.H(+) could be included into the gamma-CD but the capping effect is not notable. The effect of cationic surfactant cetyltrimethylammonium bromide and non-ionic surfactant TX-100 and TX-80 on CPFX fluorescence was unimpressive, but the anionic surfactant's effect is aberrant. The fluorescence intensity of CPFX.HCl solution experiences three stages of increasing, decreasing and increasing in turn, as sodium dodecyl sulfate is adding gradually. But for sodium lauryl sulfonate, there are only two stages of decreasing and increasing with the concentration increasing. It is problematic to illustrate clearly the effect mechanism of acetone and anionic surfactant at present. Undoubtedly, the experimental results in this paper should be useful in practice works and the research is worth studying still further.  相似文献   

16.
The binding of organic contaminants to dissolved humic acids reduces the free concentration of the contaminants in the environment and also may cause changes to the solution properties of humic acids. Surfactants are a special class of contaminants that are introduced into the environment either through wastewater or by site-specific contamination. The amphiphilic nature of both surfactants and humic acids can easily lead to their mutual attraction and consequently affect the solution behavior of the humics. Binding of an anionic surfactant (sodium dodecyl sulfate, SDS) and two cationic surfactants (dodecyl- and cetylpyridinium chloride, DPC and CPC) to purified Aldrich humic acid (PAHA) is studied at pH values of 5, 7, and 10 in solutions with a 0.025 M ionic strength (I). Monomer concentrations of the surfactants are measured with a surfactant-selective electrode. At I = 0.025 M, no significant binding is observed between the anionic surfactant (SDS) and PAHA, whereas the two cationic surfactants (DPC, CPC) bind strongly to PAHA over the pH range investigated. The binding is due both to electrostatic and hydrophobic attraction. The initial affinity increases with increasing pH (i.e., negative charge of PAHA) and tail length of the surfactant. Binding reaches a pseudo-plateau value (2-5 mmol/g) when the charge associated with PAHA is neutralized by that of the bound surfactant molecules. The pseudo-plateau values for DPC and CPC are very similar and depend on the solution pH. The cationic surfactant-PAHA complexes precipitate when the charge neutralization point is reached. This occurs at approximately 10% of the critical micelle concentration or CMC. This type of phase separation commonly occurs during surfactant binding to oppositely charged polyelectrolytes. For CPC, the precipitation is complete, but in the case of DPC, a noticeable fraction of PAHA remains in solution. At very low CPC concentrations (less than 0.1% of the CMC), CPC binding to PAHA is cooperative. The investigated range of concentrations for DPC was too limited to reach a similar conclusion. The results of this study demonstrate that the fate of humic acids will be strongly affected by the presence of low cationic surfactant concentrations in aqueous environmental systems.  相似文献   

17.
Dilute mixed solutions of non-surface active anionic polymers (polyacrylamide and polystyrene sulfonate, xanthan) and various surfactants have been studied with several methods: surface tension, ellipsometry, X-ray and neutron reflectivity, thin film balance, surface and bulk rheology. A strong synergistic lowering of the surface tension is found with cationic surfactants in the concentration range where no appreciable complexation of surfactant and polymer occurs in the bulk solution (as seen from viscosity measurements). Despite appreciable differences between surface tension behaviour, the adsorbed layer is very similar for all the polymers: their thickness is small and the polymer chains are stretched along the surface. The surface tension behaviour of these polymers with non-ionic surfactants is also different. When the polymers are confined in thin films, the forces between surfaces are similar, and independent of surfactant nature: oscillatory forces are measured, which reflect the existence of a polymer network with a well defined mesh size. The connection of foam stability with surface and bulk complexation is far from clear.  相似文献   

18.
Fluorescence drainage-profiles of thin liquid films formed from Rhodamine solutions containing anionic, cationic and non-ionic surfactants have been investigated. It is found that the influence of system variables such as electrolyte concentration, dye concentration, film environment and solution viscosity can be evaluated by means of the profiles. The addition of sodium chloride leads to the expansion (non-ionic surfactant), or contraction (anionic surfactant) of the profiles. In the case of the cationic surfactant, it reduces the number of fringes in the profiles. The height of selected fringes changes linearly with dye concentration, and no fringes are observed when the films are submerged in non-polar solvents. The influence of solution viscosity on film thickness and drainage rate is demonstrated by the number and frequency of fringes in the profile. The formation of first and second "black films" from solutions containing varying concentrations of sodium chloride can be shown.  相似文献   

19.
The interaction of surface-active molecules with lipid bilayers is ubiquitous both in biological systems and also in several technological applications. Here we explore the interaction of ionic surfactants with liposomes whose composition mimics the ocular epithelia. In this study, liposomes with a composition mimicking ocular epithelia are loaded with calcein dye above the self-quenching concentration. The liposomes are then exposed to surfactants, and the rate of dye leaked from the liposomes due to the interaction of surfactants is measured. Both cationic and anionic surfactants at various concentrations and ionic strengths are explored. Results show that the liposome bilayer permeability to the dye increases on exposure to the surfactants, leading to the release of the dye trapped in the core. However, the dye release stops after a finite time, suggesting a transient increase in permeability followed by healing. The leakage profiles exhibit two different timescales for the cationic surfactant but only one timescale for the anionic surfactant. The total dye leakage increases with surfactant concentration, and at a given concentration, the dye leakage is significantly higher for the cationic surfactants. The timescale for the healing decreases with increasing surfactant concentration, and increasing ionic strength increases the dye leakage for the anionic surfactant. These results show that the surfactant binding to the lipid bilayer increases the permeability while the bilayers heal likely because of the surfactant jump from the outer to the inner leaflet and/or rearrangement into tighter aggregates.  相似文献   

20.
The synergistic effect of a new combination of Tween 80 and sodium dodecylbenzenesulfonate (SDBS) surfactants has been studied for wettability alteration of a reservoir rock. The contact angle decreased substantially for the aqueous solution of the mixed surfactant on a crude oil aged quartz substrate when compared to water and individual surfactants viz. SDBS and Tween 80. This established synergism between anionic and non-ionic surfactants. The optimal salinity for reduction of the contact angle has been figured out. The rheological effect of the mixed surfactant solution on the wettability alteration has been investigated. Adsorption of crude components at the solid–fluid interfaces has been observed to visualize the activity at the micro scale. Quantification of adsorption for the mixed surfactant on sand has been studied to meet the economical aspect. Reaction aspects of the mixed surfactant–quartz–crude oil system have been interpreted from FTIR. Functional groups present in the system have also been enquired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号