首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 391 毫秒
1.
A novel molecule template assisted chemical co‐reduction method has been successfully developed for the controlled synthesis of ultrathin β‐SiC single‐crystalline nanowires on a large scale. The ultrathin β‐SiC single‐crystalline nanowires are about 8 nm in diameter and 200–800 nm in length. The resulting thin β‐SiC single‐crystalline nanowire is new in the family of β‐SiC one‐dimensional (1D) nanostructures. A synergistic action of π‐stacking and steric hindrance result from the 1,10‐phenanthroline molecule template are proposed to explain the growth mechanism of the ultrathin β‐SiC single‐crystalline nanowires based on the experimental observation. Importantly, such ultrathin β‐SiC nanowire has shown a strong structure‐induced enhancement of photoluminescence properties and has exhibited a very strong green light emission, which can be seen by naked eye. Furthermore, the unique β‐SiC ultrathin nanowire structure exhibits a low turn‐on field (3.57 V μm?1) and a large field‐emission current density (20 mA cm?2). These results suggest that the ultrathin β‐SiC nanowires can be expected to find promising applications as field emitters and photoelectronic devices.  相似文献   

2.
An effective, low cost, simple, and mask-free pathway is demonstrated for achieving density control of the aligned ZnO nanowires grown for large-scale applications. By a slight variation of the thickness of the thermally evaporated gold catalyst film, a significant change in the density of aligned ZnO nanowires has been controlled. The growth processes of the nanowires on an Al(0.5)Ga(0.5)N substrate has been studied based on the wetting behavior of gold catalyst with or without source vapor, and the results classify the growth processes into three categories: separated dots initiated growth, continuous layer initiated growth, and scattered particle initiated growth. This study presents an approach for growing aligned nanowire arrays on a ceramic substrate with the simultaneous formation of a continuous conducting electrode at the roots, which is important for device applications, such as field emission.  相似文献   

3.
The rapid development of industrialization has resulted in severe environmental problems. A comprehensive assessment of air quality is urgently required all around the world. Among various technologies used in gas molecule detection, including Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, mass spectroscopy (MS), electrochemical sensors, and metal oxide semiconductor (MOS) gas sensors, MOS gas sensors possess the advantages of small dimension, low power consumption, high sensitivity, low production cost, and excellent silicon chip compatibility. MOS sensors hold great promise for future Internet of Things (IoT) sensors, which will have a profound impact on indoor and outdoor air quality monitoring. The development of nanotechnology has significantly enhanced the development of MOS gas sensors. Among various nanostructures like nanoparticles, nanosheets and nanowires, the emergence of quasi-one-dimensional (q1D) nanowires/nanorods/nanofibers, with unique q1D geometry (facilitating fast carrier transport) and large surface-to-volume ratio, potentially act as ideal sensing channels for MOS sensors with extremely small dimension, and good stability and sensitivity. These structures have thus been the focus of extensive research. Among the various MOS nanomaterials available, tungsten oxide (WO3-x, 0 ≤ x < 1) nanowires feature the characteristic properties (multiple oxidation states, rich substoichiometric oxides with distinct properties, photo/electrochromism, (photo)catalytic properties, etc.), and unique q1D geometry (single-crystalline pathway for fast carrier transport, large surface-to-volume ratio, etc.). WO3-x nanowires have broad applications in smart windows, energy conversation & storage, and gas sensing devices, and have thus become a focus of attention. In this paper, the fundamental properties of tungsten oxide, synthesis methods and growth mechanism of tungsten oxide nanowires are reviewed. Among various (vapor-liquid-solid (VLS), vapor-solid (VS) and thermal oxidation) growth methods, the thermal oxidation method enables an in situ integration of WO3-x nanowires on predefined electrodes (so-called bridged nanowire devices) via the oxidation of lithographically patterned W film at relatively low growth temperature (~500 ℃) because of interfacial strain, defects and oxygen on the surface of the W film. The novel bridged nanowire-based sensor devices outperform traditional lateral nanowire devices in terms of larger exposure area, low power consumption via self-heating, and greater convenience in device processing. Recent progress in bridged WO3-x nanowire devices and sensitive NOx molecule detection under low power consumption have also been reviewed. Power consumption of as low as a few milliwatts was achieved, and the detection limit of NO2 was reduced to 0.3 ppb (1 ppb = 1 × 10-9, volume fraction). In situ formed bridged WO3-x nanowire devices potentially satisfy the strict requirements of IoT sensors (small dimension, low power consumption, high integration, low cost, high sensitivity, and selectivity), and hold great promises for future IoT sensors.  相似文献   

4.
一种新的电化学方法制备CdS纳米线阵列   总被引:8,自引:0,他引:8  
用一种新的电化学方法在多孔氧化铝模板中制备了CdS纳米线阵列体系,并用XRD、TEM对样品进行表征,结果显示CdS纳米线为立方相和六方相的多晶混合结构,对沉积机理进行了讨论.荧光光谱测量显示CdS纳米线阵列体系有三个强的紫外发光带和一个黄绿发光带.该文所使用的方法可以用来在氧化铝模板中制备其它材料的纳米线阵列体系.  相似文献   

5.
大长径比ZnS纳米线的制备、结构和生长机理   总被引:2,自引:0,他引:2  
通过碳热辅助化学气相沉积法, 以Au作为催化剂, 在较低温度(800 益)制备了ZnS纳米线, 其尺寸均匀, 表面光滑, 直径约为40 nm, 具有很大的长径比, 是典型的单晶纤锌矿六方结构. 高分辨透射电镜和选区电子衍射分析表明, 纳米线的生长方向为[1100], 与已报道的生长方向不同. 纳米线的生长是由气-液-固(vapor-liquid-solid)机理控制的.  相似文献   

6.
A free-standing, large area, oriented single-crystal rutile TiO(2) nanowire arrays with a controlled length in the range of 10-80 μm are prepared via a facile one-step synthesis. The growth process is studied systematically in an appropriate amount of H(2)O(2) and HCl solution under hydrothermal conditions. The length of the nanowires can be easily tuned by varying the experimental parameters, including reaction temperature and reaction time. High-resolution transmission electron microscopy demonstrated that the nanowires have single-crystal structure. Furthermore, the photoluminescence characteristics and photocatalytic properties of oriented single-crystal rutile TiO(2) nanowires was discussed in this paper, respectively. It is found that the increased reaction temperature is helpful to photocatalytic reactivity and photoluminescence properties.  相似文献   

7.
A simple one-step hydrothermal method for large-scale synthesis of ultralong single-crystalline Bi2S3 nanowires was reported, and the nanowires were comprehensively characterized. The diameters of the nanowires are about 60 nm, and their lengths range from tens of microns to several millimeters. The structure of the nanowires was determined to be of the orthorhombic phase, the growth direction was along [001], and the growth mechanism was investigated based on extensive high-resolution transmission electron microscopy observations. Optical absorption experiments revealed that the Bi2S3 nanowires are narrow-band semiconductors with a band gap E(g) approximately 1.33 eV. Electrical transport measurements on individual nanowires gave a resistivity of about 1.2 ohms cm and an emission current of 3.5 microA at a bias field of 35 V/microm. This current corresponds to a current density of about 10(5) A/cm2, which makes the Bi2S3 nanowire a potential candidate for applications in field-emission electronic devices.  相似文献   

8.
Since the successful growth of carbon nanotubes, one-dimensional materials have been a focused research field both because of their fundamental importance and the wide-ranging potential applications in nano devices. Many approaches are used to fabricate nanowires, such as crystal growth. In order to obtain nanowires whose growth is more easily controlled, electrochemical synthesis in a template is taken as one of the most efficient methods. To date, Co, Fe, Ni, CuCo1-3 and other nanowire arrays have been fabricated successfully by electrodepositing corresponding metal ion into the porous aluminum oxide (PAO) membrane or other non-magnetic materials. Cadmium sulfide(CdS), as one of the most important semiconductor material, is a n-type semiconductor. The ability to fine tune their fundamental electronic and optical properties by simply varying the cruster size, rather than composition, makes them highly attractive for a variety of possible application. In this paper, we report our work of fabricating CdS nanowire arrays based on AC electrolysis into the pores of an anodic aluminum oxide(AAO), the structure and morphology were characterized by XRD and TEM.  相似文献   

9.
We present a mass transport model based on surface diffusion for metal-particle-assisted nanowire growth. The model explains the common observation that for III/V materials thinner nanowires are longer than thicker ones. We have grown GaP nanowires by metal-organic vapor phase epitaxy and compared our model calculations with the experimental nanowire lengths and radii. Moreover, we demonstrate that the Gibbs-Thomson effect can be neglected for III/V nanowires grown at conventional temperatures and pressures.  相似文献   

10.
In-doped ZnO (IZO) nanowires have been synthesized by a thermal evaporation method. The morphology and microstructure of the IZO nanowires have been extensively investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). The products in general contain several kinds of nanowires. In this work, a remarkable type of IZO zigzag nanowire with a periodical twinning structure has been investigated by transmission electron microscopy (TEM). HRTEM observation reveals that this type of IZO nanowire has an uncommonly observed zinc blend crystal structure. These nanowires, with a diameter about 100 nm, grow along the [111] direction with a well-defined twinning relationship and a well-coherent lattice across the boundary. In addition, an IZO nanodendrite structure was also observed in our work. A growth model based on the vapor-liquid-solid mechanism is proposed for interpreting the growth of zigzag nanowires in our work. Due to the heavy doping of In, the emission peak in photoluminescence spectra has red-shifted as well as broadened seriously.  相似文献   

11.
Facile growth of CuS nanowires through self‐assembly and their application as building blocks for near‐infrared light‐responsive functional films have been demonstrated. It is found that DNA is a key factor in preparing the CuS material with defined nanostructure. An exclusive oriented self‐aggregate growth mechanism is proposed for the growth of the nanowires, which might have important implications for preparing advanced, sophisticated nanostructures based on DNA nanotechnology. By employing the hydrophilic CuS nanowire as an optical absorber and thermosensitive nanogel as guest reservoir inside alginate film, a new platform for the release of functional molecules has been set up. In vitro studies have shown that the hybrid film possesses excellent biocompatibility and the release rate of chemical molecules from the film could be controlled with high spatial and temporal precision. Our novel approach and the resulting outstanding combination of properties may advance both the fields of DNA nanotechnology and light‐responsive devices.  相似文献   

12.
Synthesis of CdS and ZnS nanowires using single-source molecular precursors   总被引:6,自引:0,他引:6  
Single-source molecular precursors were used to synthesize II-VI compound semiconductor nanowires for the first time. Cadmium sulfide and zinc sulfide nanowires were prepared using cadmium diethyldithiocarbamate, Cd(S2CNEt2)2, and zinc diethyldithiocarbamate, Zn(S2CNEt2)2, respectively, as precursors in a gold nanocluster-catalyzed vapor-liquid-solid growth process. High-resolution transmission electron microscopy studies show that the CdS and ZnS nanowires are single-crystal wurtzite structures with stoichiometric compositions. In addition, photoluminescence measurements demonstrate that these nanowires exhibit high-quality optical properties. The applicability of our approach to the synthesis of other compound and alloy semiconductors nanowires as well as nanowire heterostructures of these materials is discussed.  相似文献   

13.
Large-area highly oriented SiC nanowire arrays have been fabricated by chemical vapor reaction using an ordered nanoporous anodic aluminum oxide (AAO) template and a graphite reaction cell. Their microstructures were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction and high-resolution transmission electron microscopy. The results show that the nanowires are single-crystalline beta-SiC's with diameters of about 30-60 nm and lengths of about 8 microm, which are parallel to each other, uniformly distributed, highly oriented, and in agreement with the nanopore diameter of the applied AAO template. The nanowire axes lie along the [111] direction and possess a high density of planar defects. Some unique optical properties are found in the Raman spectroscopy and photoluminescence emission from oriented SiC nanowire arrays, which are different from previous observations of SiC materials. The growth mechanism of oriented SiC nanowire arrays is also analyzed and discussed.  相似文献   

14.
Synthesis and Characterization of ZnO Nanowires   总被引:1,自引:0,他引:1  
Zinc oxide is a wide bandgap (3.37 eV) semiconductor with a hexagonal wurtzite crystal structure. ZnO prepared in nanowire form may be used as a nanosized ultraviolet light-emitting source. In this study, ZnO nanowires were prepared by vapor-phase transport of Zn vapor onto gold-coated silicon substrates in a tube furnace heated to 900 ?C. Gold serves as a catalyst to capture Zn vapor during nanowire growth. Size control of ZnO nanowires has been achieved by varying the gold film thickness…  相似文献   

15.
Crystalline boron nanowires with tetragonal structure have been synthesized based on laser ablation of a B/NiCo target; the nanowires are sometimes single crystals and have a droplet at one end of the nanowire; the droplet contains B, Ni and Co elements, which indicates that the vapor-liquid-solid (VLS) mechanism may play a key role in the growth of the boron nanowires.  相似文献   

16.
Single-crystalline Ni nanowires have been successfully fabricated with anodic aluminum oxide as template by electrodeposition. Structural characterization (X-ray diffraction, XRD, and high-resolution transmission electron microscopy, HRTEM) shows that the single-crystalline Ni nanowire has a preferred orientation along the [220] direction. The effects of electrochemical deposition conditions on the structure of Ni nanowires are systematically studied to investigate the growth mechanism. Possible reasons for the growth of the single-crystalline Ni nanowires were discussed on the basis of electrochemistry and thermodynamics. These single-crystalline Ni nanowires have exhibited excellent magnetic properties (large anisotropy, large coercivity, and high remanence). By a similar process, single-crystalline Co nanowires with hexagonal close-packed (hcp) structure were achieved, also having large anisotropy, large coercivity (1.8 kOe), and high remanence ratio (80.8%).  相似文献   

17.
A facile strategy for preparing vertically aligned polypyrrole (PPy) nanoarrays with precisely controlled density and quantity is presented. The method involves two steps: (1) the fabrication of the patterned substrate via electron beam lithography and (2) the controlled growth of PPy nanowires via electrochemical polymerization on the patterned substrate. The electrical property of a single PPy nanowire is investigated via in situ conducting probe atomic force microscopy.  相似文献   

18.
Long YZ  Yu M  Sun B  Gu CZ  Fan Z 《Chemical Society reviews》2012,41(12):4560-4580
Semiconducting inorganic nanowires (NWs), nanotubes and nanofibers have been extensively explored in recent years as potential building blocks for nanoscale electronics, optoelectronics, chemical/biological/optical sensing, and energy harvesting, storage and conversion, etc. Besides the top-down approaches such as conventional lithography technologies, nanowires are commonly grown by the bottom-up approaches such as solution growth, template-guided synthesis, and vapor-liquid-solid process at a relatively low cost. Superior performance has been demonstrated using nanowires devices. However, most of the nanowire devices are limited to the demonstration of single devices, an initial step toward nanoelectronic circuits, not adequate for production on a large scale at low cost. Controlled and uniform assembly of nanowires with high scalability is still one of the major bottleneck challenges towards the materials and device integration for electronics. In this review, we aim to present recent progress toward nanowire device assembly technologies, including flow-assisted alignment, Langmuir-Blodgett assembly, bubble-blown technique, electric/magnetic- field-directed assembly, contact/roll printing, planar growth, bridging method, and electrospinning, etc. And their applications in high-performance, flexible electronics, sensors, photovoltaics, bioelectronic interfaces and nano-resonators are also presented.  相似文献   

19.
The growth velocity of platinum nanowires in an aqueous solution of K(2)PtCl(4) is investigated as a function of the metal complex concentration and temperature. The solution is specially prepared to provide mainly the neutral complex cis-[PtCl(2)(H(2)O)(2)] for growing nanowires by dielectrophoresis. The measured growth velocities indicate diffusion-limited nanowire growth at low concentration and high temperature in qualitative agreement with a theoretical analysis that includes the diffusion of metal complexes and the dielectrophoretic force on the complexes. At concentrations greater than 100 μM and low temperature, different behavior is observed, suggesting the growth rate to be limited by the deposition reaction of platinum at the nanowire tip. The enhancement of the K(+) concentration is found to support nanowire growth. Possible reasons for a rate limitation and for the difference between observed and calculated nanowire growth velocities are discussed.  相似文献   

20.
We report first-principles calculations on the electrical transport properties of two kinds of one-dimensional nanowires: (a) a carbon nanowire (CNW) with alternating single and triple bonds and (b) a boron-nitrogen nanowire (BNNW) with equidistant bonds. We demonstrate the similarity and difference between the carbon nanowire and its boron-nitrogen analogue in the molecular orbital and transport properties, and then explore the potential innovations. The effects of molecular orbitals and nanowire-electrode coupling on the transport properties are analyzed. The cases of the nanowires sandwiched between both nanoscale and bulk electrodes are considered. It suggests that the characteristics of the transmission spectra and the current-voltage characteristics (I-V curves) are determined both by the electrodes and by the molecule as well as their coupling. In particular, the negative differential resistance (NDR) phenomenon is more apparent when the nanowires are positioned between two nanoscale electrodes. The tuning of the transport properties is also probed through the changes of nanowire-electrode separation and the inclusion of a gate voltage. These lead to dramatic variations in the equilibrium conductance, which can be understood from the shift and alignment of the molecular orbital relative to the Fermi level of the electrodes. In the analysis of the effects of nanowire-electrode separation, it shows that the equilibrium conductance has the same variation behavior as that of the projected density of states (PDOS) for CNW, while the localized molecular orbitals of BNNW result in its conductance varies differently from its PDOS. The different molecular orbital characteristics near the Fermi level of these two kinds of nanowires underlie their different transport properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号