首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Enantiomeric separation of two aromatic α-substituted alanine esters was achieved on two commercially available polysaccharide-based chiral stationary phases (CSPs): amylose tris(3,5-dimethylphenylcarbamate) (ADMPC) and cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC). The interactions between enantiomeric analytes and the CSPs were investigated using chromatographic methods and vibration circular dichroism (VCD). The two analytes differ on the aromatic portion of the molecules where one analyte has a π-acceptor aromatic ring (1) while the other has a π-donor aromatic ring (2). When an ADMPC CSP was employed, an increase in the polarity of the mobile phase leads to a reversal of the elution order for the two enantiomers of 1. The elution order of compound 2 was not affected by the polarity of the mobile phase. In order to gain an understanding of these phenomena, the enantiomeric separation of 1 and 2 was also performed on the CDMPC CSP. Interestingly, no reversal of elution order was observed upon the chromatographic separation of both pairs of enantiomers of compounds 1 and 2 upon increasing the solvent polarity when a CDMPC CSP was utilized. To understand the underlying mechanism governing these chiral separations, VCD was applied to study the structure of the ADMPC and CDMPC polymers and their conformational behaviors under chromatographic conditions. For the first time the conformations of the side chains of both polymers were revealed based on the VCD spectra along with DFT calculations. Furthermore, the interactions between the two analytes and the two CSPs were directly probed by VCD. By comparing the spectral differences of the two CSPs in the presence of the two analytes, the detailed interactions involving different functional groups associated with the chiral recognition were elucidated and thus explained the unusual reversal of elution order associated with increasing solvent polarity.  相似文献   

2.
含磷手性化合物在多聚糖类手性固定相上的手性分离   总被引:4,自引:0,他引:4  
在纤维素 三(3,5 二甲基苯基氨基甲酸酯)(ChiralcelOD)和直链淀粉 三(3,5 二甲基苯基氨基甲酸酯)(ChiralpakAD H)手性固定相上,采用高效液相色谱正相条件,分离了系列含磷手性化合物。考察了流动相中有机改性剂的种类及浓度对手性分离的影响;研究了化合物的结构与保留及对映体选择性的关系;并探讨了手性识别机理。  相似文献   

3.
High-performance liquid chromatographic methods were developed for separation of the enantiomers of mirtazapine and its four process-related substances. The direct separations were achieved on chiral stationary phases containing amylose tris(3,5-dimethylphenylcarbamate) (Chiralpak AD-H), cellulose tris(3,5-dimethylphenylcarbamate) (Chiralcel OD-H) and cellulose tris(4-methylbenzoate) (Chiralcel OJ-H ). The experimental data were utilized to discuss the effects of the mobile phase composition, the nature of the alcoholic modifier and the specific structural features of the analytes on retention and separation. The elution sequence was determined under the optimized separation conditions.  相似文献   

4.
Novel HPLC methods were developed for the analytical and semipreparative resolution of new antidepressant drug mirtazapine enantiomers. At analytical scale, the separation of the mirtazapine enantiomers was investigated using both cellulose and amylose tris(3,5-dimethylphenylcarbamate) (CDMPC and ADMPC) chiral stationary phases under normal-phases and polar organic modes. Good baseline enantioseparation was achieved using cellulose tris(3,5-dimethylphenylcarbamate) chiral stationary phases under both normal-phases and polar organic modes. Furthermore, the elution order of mirtazapine enantiomic pairs was found reversed by changing the stationary phase from the amylose-based ADMPC–CSPs to its cellulose-based counterpart, CDMPC–CSPs. The validation of the analytical methods including linearity, limit of detection (LOD), limit of quantification (LOQ), recovery and precision, together with the semipreparative resolution of mirtazapine racemate were carried out using cellulose tris(3,5-dimethylphenylcarbamate) chiral stationary phases and methanol as mobile phase without any basic additives under polar organic mode. At analytical scale, the elution times of both enantiomers were less than 6 min at normal temperature and 1.0 ml/min, with the separation factor () 1.99 and the resolution factor (Rs) 3.56. Then, the analytical methods were scaled up to semipreparative loading to obtain small quantities of both mirtazapine enantiomers. At semipreparative scale, about 16 mg/h enantiomers could be isolated and elution times of both enantiomers were less than 10 min at 2.0 ml/min. To increase the throughput, the technique of boxcar injections was used. One enantiomer ((−)-(R)-mirtazapine) was isolated with purity of >99.9% e.e. and >98.0% yield and another ((+)-(S)-mirtazapine) was isolated with purity of >97.0% e.e. and >99.0% yield. In addition, optical rotation and circular dichroism (CD) spectroscopy of both mirtazapine enantiomers isolated were also investigated.  相似文献   

5.
将纤维素三(3,5-二甲基苯基氨基甲酸酯)(cellulose tris(3,5-dimethyIphenylcarbamate),CDMPC)和淀粉三(3,5-二甲基苯基氨基甲酸酯)(Amylose tris(3,5-dimethylphenylcarbamate),ADMPC)分别涂敷于氨丙基硅胶上然后混合,或者将...  相似文献   

6.
Twenty different tris(phenylcarbamate)s of cellulose were synthesized and evaluated as chiral stationary phases for HPLC. Optical resolving power of the tris(phenylcarbamate)s depends on the substituents introduced on the phenyl groups. Optical resolving abilities of amylose tris(phenylcarbamate)s were also evaluated. In most cases, either cellulose tris(3,5-dimethylphenylcarbamate) or amylose tris(3,5-dimethylphenylcarbamate) exhibited the highest optical resolving ability. Aralkylcarba-mates such as benzyl- and 1-phenylethylcarbamates of cellulose and amylose were also tested as chiral stationary phases. (S)-1-Phenylethylcarbamate of amylose showed a high optical resolving power.  相似文献   

7.
The performance of four commercially available cellulose tris(3,5-dimethylphenylcarbamate) based chiral stationary phases (CSPs) was evaluated with parallel high performance liquid chromatography (HPLC) and super critical fluid chromatography (SFC). Retention, enantioselectivity, resolution and efficiency were compared for a set of neutral, basic and acidic compounds having different physico-chemical properties by using different mobile phase conditions. Although the chiral selector is the same in all the four CSPs, a large difference in the ability to retain and resolve enantiomers was observed under the same chromatographic conditions. We believe that this is mainly due to differences in the silica matrix and immobilization techniques used by the different vendors. An extended study of metoprolol and structure analogues gave a deeper understanding of the accessibility of the chiral discriminating interactions and its impact on the resolution of the racemic compounds on the four CSPs studied. Also, a clear difference in enantioselectivity is observed between SFC and LC mode, hydrogen bonding was found to play an important role in the differential binding of the enantiomers to the CSPs.  相似文献   

8.
Enantioseparations of chiral compounds with different structures were studied in non-aqueous capillary electrochromatography (NAQ CEC). Three different polysaccharide derivatives, cellulose tris(3,5-dimethylphenylcarbamate) (Chiralcel OD), amylose tris(3,5-dimethylphenylcarbamate) (Chiralpak AD) and cellulose tris(4-methylbenzoate) (Chiralcel OJ) were used as chiral stationary phases (CSPs). Methanolic or ethanolic ammonium acetate solutions served as a mobile phase. The effect of the type of the CSP, the loading of the chiral selector on wide-pore aminopropyl derivatized silica gel and operational parameters such as apparent pH, applied voltage, etc. on the EOF and chromatographic characteristics (alpha, N, Rs) were studied. NAQ CEC represents a valuable alternative and an extension to chiral separations by HPLC with common-size columns as well as to capillary LC and CEC in aqueous buffers.  相似文献   

9.
The mechanism of chiral separation on amylose tris(3,5‐dimethylphenylcarbamate) is studied with docking simulations of enantiomers by molecular dynamics. All‐atom models of amylose tris(3,5‐dimethylphenylcarbamate) on the modified silica gel surface were constructed for the docking simulations of metalaxyl and benalaxyl. The elution orders and energetic differences were also predicted based on the intermolecular interactions, which were in agreement with the experimental results. The radial distribution function was employed to analyze the structural features of the enantiomer‐chiral stationary phase complex and used to elucidate the mechanism of chiral separation. The separation of metalaxyl and benalaxyl is mainly controlled by the hydrogen bond. And the binding sites had slight differences for the pair of enantiomers, but obvious differences between different chemicals.  相似文献   

10.
Analytical high-performance liquid chromatographic enantioseparation of 1-(4-chlorobenzhydryl) piperazine benzamide derivatives was accomplished on different chiral stationary phases. The enantiomers of the compounds were resolved by normal-phase chromatography on silica-based amylose tris(3,5-dimethylphenylcarbamate) (Chiralpak AD-H), cellulose tris(3,5-dimethylphenylcarbamate) (Chiralcel OD-H) and cellulose tris(4-methylbenzoate) (Chiralcel OJ) columns with mobile phases consisting of mixtures of n-hexane and ethanol in different proportions (90: 10, 80: 20). The mobile phase and the chiral stationary phase were varied to achieve the best resolution. The effect of the concentration of ethanol in the mobile phase was studied. The resolution obtained on the three columns was significant.  相似文献   

11.
The enantiomeric resolution of a series of 20 asymmetric sulfoxides was systematically investigated by HPLC using multimodal elution with amylose trisR(S)-1-phenylethylcarbamate], amylose tris(3,5-dimethoxyphenylcarbamate) and amylose and cellulose tris(3,5-dimethylphenylcarbamate) phases. The sulfoxide series was composed of aromatic, olefinic and ketosulfoxides, sulfinyl acids and esters. This work has shown that enantioselectivity and enantioresolution of the polysaccharide-based columns can be achieved by changing the type and composition of the mobile phase, widening the applicability of these chiral phases.  相似文献   

12.
Three polysaccharide-derived chiral stationary phases (CSP) were evaluated for the resolution of more than 200 racemic compounds of pharmaceutical interest in the reversed-phase (RP) separation mode. The population of test probes was carefully evaluated in order to insure that it covers as completely as possible all structural diversity of chiral pharmaceuticals. RP showed the highest potential for successful chiral resolution in HPLC and LC/MS analysis when compared to normal phase and polar organic separation modes. Method development consisted of optimizing mobile phase eluting strength, nature of organic modifier, nature of additive and column temperature. The newer CSPs, cellulose tris(3-chloro-4-methylphenylcarbamate) and amylose tris(2-chloro-5-methylphenylcarbamate), were compared to the commonly used cellulose tris(3,5-dimethylphenylcarbamate) in regards to their ability to provide baseline resolution. Comparable success rates were observed for these three CSPs of quite complimentary chiral recognition ability. The same method development strategy was evaluated for LC/MS analysis. Diethylamine as additive had a negative effect on analyte response with positive ion mode electrospray (ESI+) MS(/MS) detection, even at very low concentration levels (e.g., 0.025%). Decreasing the organic modifier (acetonitrile or methanol) content in the mobile phase often improved enantioselectivity. The column temperature had only a limited effect on chiral resolution, and this effect was compound dependent. Ammonium hydrogencarbonate was the preferred buffer salt for chiral LC with ESI+ MS detection for the successful separation and detection of most basic pharmaceutical racemic compounds. Ammonium acetate is a viable alternative to ammonium hydrogencarbonate. Aqueous formic acid with acetonitrile or methanol can be successfully used in the separation of acidic and neutral racemates. Cellulose tris(3-chloro-4-methylphenylcarbamate) and amylose tris(2-chloro-5-methylphenylcarbamate) emerge as CSPs of wide applicability in either commonly used separation modes rivaling such well established CSPs as cellulose tris(3,5-dimethylphenylcarbamate). Screening protocols including these two new CSPs in the preferentially screened set of chiral columns have higher success rates in achieving baseline resolution in shorter screening time.  相似文献   

13.
A series of novel chiral triazole compounds were synthesized. They were separated into enantiomers by liquid chromatography on an amylose tris(3,5-dimethylphenylcarbamate) (ADMPC) chiral stationary phase (CSP). The absolute configuration of each enantiomer of the investigated compounds was established by combined use of chemical correlation, chiral HPLC and circular dichroism (CD) spectra analysis methods. The influence of the mobile-phase modifiers and the structure of chiral triazole compounds on the chiral separation and retention were investigated. Reversal of the elution order of some enantiomeric pairs upon using different mobile-phase modifier was observed. The temperature effect on the chiral separation and the thermodynamic properties including enthalpy and entropy change of binding to the ADMPC-CSP were also investigated.  相似文献   

14.
A convenient method is presented for the first time for the direct separation of enantiomers of a tris(2-phenylpyridine) iridium (III) and an analog substituted with long alkoxy chains on polysaccharide derivative-based chiral stationary phases by HPLC. Tris(2-phenylpyridine) iridium (III) was separated on the immobilized amylose 3,5-dimethylphenylcarbamate (Chiralpak IA) using hexane/CHCl3/CH2Cl2 (75:20:5) as an eluent, and the analog could be separated on the coated cellulose 3,5-dimethyl-phenylcarbamate (Chiralcel OD) and cellulose 4-methylbenzoate (Chiralcel OJ) using hexane/2-propanol (96:4) as the eluent. CD spectra of the eluted HPLC fractions were also recorded, and the observed mirror image patterns confirm their enantioseparations.  相似文献   

15.
通过糖单元6-位羟基的保护和去保护,运用区域选择性方法合成了6种新型多糖类氨基甲酸酯衍生物,分别为纤维素/直链淀粉-[2,3-二(3,5-二甲基苯基)-6-环己基]氨基甲酸酯、[2,3-二(3,5-二氯苯基)-6-环己基]氨基甲酸酯及[2,3-二(4-氯苯基)-6-环己基]氨基甲酸酯,并将其涂敷在氨丙基硅胶的表面制备HPLC手性固定相.利用1H-NMR与FTIR光谱技术对所合成衍生物进行结构表征和分析,并应用HPLC法评价其对于9种手性化合物的手性识别能力.通过与以手性识别能力高而著称且含有单一取代基的纤维素/直链淀粉-三(3,5-二甲基苯基氨基甲酸酯)等手性固定相的对比分析表明,所合成新型手性固定相对于某些对映体显示出更优的手性识别能力.由进一步分析表明,糖单元2-、3-和6-位取代基的性能对于纤维素和直链淀粉氨基甲酸酯类衍生物的手性识别能力均具有较大影响.  相似文献   

16.
通过区域选择性方法制备了两种新型淀粉衍生物,分别为淀粉2-苯甲酸酯-3-(4-甲基苯基氨基甲酸酯)-6-(3,5-二氯苯基氨基甲酸酯)和淀粉2-苯甲酸酯-3-(3,5-二氯苯基氨基甲酸酯)-6-(4-甲基苯基氨基甲酸酯),将二者分别涂覆于氨丙基硅胶后用作液相色谱手性固定相。研究表明:所制备的手性固定相显示出特异的手性识别能力,其手性识别能力明显高于均匀取代淀粉衍生物——淀粉三(3,5-二氯苯基氨基甲酸酯),取代基的性质及在葡萄糖单元上的位置对手性固定相的手性识别能力有较大的影响。一些未在商品化的手性柱Chiralpak AD上得到有效分离的手性化合物在所制备的固定相上得到了更好的分离。所测试的8对对映体在淀粉2-苯甲酸酯-3-(4-甲基苯基氨基甲酸酯)-6-(3,5-二氯苯基氨基甲酸酯)固定相上均得到了分离,因而此固定相的手性识别能力较强,具有潜在的应用价值。  相似文献   

17.
The separation of the enantiomers of 17 chiral sulfoxides was studied on polysaccharide‐based chiral columns in polar organic mobile phases. Enantiomer elution order (EEO) was the primary objective in this study. Two of the six chiral columns, especially those based on amylose tris(3,5‐dimethylphenylcarbamate) and cellulose tris(4‐chloro‐3‐methylphenylcarbamate) (Lux Cellulose‐4) proved to be most successful in the separation of the enantiomers of the studied sulfoxides. Interesting examples of EEO reversal were observed depending on the chiral selector or the composition of the mobile phase. For instance, the R‐(+) enantiomer of lansoprazole eluted before the S‐(?) enantiomer on Lux Cellulose‐1 in both methanol or ethanol as the mobile phase, while the elution order was opposite in the same eluents on amylose tris(3,5‐dimethylphenylcarbamate) with the S‐(?) enantiomer eluting before the R‐(+) enantiomer. The R‐(+) enantiomer of omeprazole eluted first on Lux Amylose‐2 in methanol but it was second when acetonitrile was used as the mobile phase with the same chiral selector. Several other examples of reversal in EEO were observed in this study. An interesting example of the separation of four stereoisomers of phenaminophos sulfoxide containing chiral sulfur and phosphor atoms is also reported here.  相似文献   

18.
Effective enantiomeric separations of erythro- and threo-8.O.4'-neolignans with different aromatic substitution pattern (1a-i, 2a-i) are achieved on the commercially available chiral stationary phase cellulose tris(3,5-dimethylphenylcarbamate) (Chiralcel OD). It is shown that the chiral recognition of the stationary phase is significantly dependent on the substitution pattern of the racemic compounds. Online liquid chromatography (LC)-circular dichroism (CD) analysis allows for the establishment of a correlation between the absolute configuration of the separated erythro-8.O.4'-neolignans and their characteristic CD transitions, which could be used to determine or revise the configuration of previously isolated erythro-8.O.4'-neolignans. Although the absolute configurations of threo-isomers is not determined unambiguously from the LC-CD analysis, it is proven that both their elution order and chiroptical properties are significantly influenced by the substitution pattern of the aromatic rings.  相似文献   

19.
The separation of a series of 23 asymmetric sulfoxides, including the three proton pump inhibitors (PPI) omeprazole, lansoprazole and pantoprazole was investigated by HPLC, under reversed-phase elution with amylose tris(3,5-dimethylphenylcarbamate), amylose tris[(S)-1-phenylethylcarbamate] and amylose tris(3,5-dimethoxyphenylcarbamate) chiral stationary phases, CSP1-3, respectively. The whole set of sulfoxides showed better enantioselectivity and enantioresolution on CSP1. However, the three PPI were enantioseparated only when using CSP1 and CSP3. It was observed an improved enantioselectivity and enantioresolution on CSP3. The mechanisms of retention were evaluated by molecular interaction fields (MIF) generated via GRID force field, which yielded the geometric reasons leading to the scenario outlined. The enantioselective and nonselective interactions are discussed in terms of the reported selectivity. The steric structural outline of the CSP nonselective interaction sites is of major importance to deliver the sulfoxides to the chiral selective sites where the enantioselective interactions take place.  相似文献   

20.
M. Yarim  S. Sarac 《Chromatographia》2002,56(5-6):307-312
Summary Analytical HPLC methods using derivatized cellulose chiral stationary phases have been developed for separation of the enantiomers of 25 racemic 4-aryl-7,7-dimethyl- or 1,77-trimethyl-1,2,3,4,5,6,7,8-octahydroquinazoline-2,5-diones, condensed derivatives of dihydropyrimidines. The enantiomers of the compounds were resolved by normal-phase chromatography on silica-based cellulose tris(3,5-dimethylphenylcarbamate) (Chiralcel OD) and amylose tris(3,5-dimethylphenylcarbamate) (Chiralpak AD) columns with mobile phases consisting of mixtures ofn-hexane and an alcohol (2-propanol, ethanol, or methanol) in different proportions. The mobile phase and the chiral stationary phase were varied to achieve the best resolution. The effect of the concentration of alcohol in the mobile phase was studied. The resolution obtained on the two columns was complementary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号