首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The present work deals with the deposition of NiO and Nitrogen (N)-doped NiO thin films by sol-gel spin coating technique. Structural, morphological, linear and non-linear optical characteristics of undoped and N-doped (1–15 wt%) NiO films were studied. From XRD measurements, it is evident that single phase nano crystalline NiO is formed for all doping concentrations. Surface morphology study shows that higher concentration of N doped NiO thin films were of high quality and EDX mapping confirmed the doping of Nitrogen in films. The Raman spectra of the studied films were analyzed over the range of 1400-200 cm−1. The optical studies confirm that as doping increases, transparency of the film decreases (except at 10% N doping) and the band gap narrows. Nonlinear parameters such as refractive index and susceptibilities also depend on N dopant concentration. Z-scan studies viz., absorption index, nonlinear refractive index were carried out on undoped and N doped NiO samples and the results were matched with theoretical calculated values.  相似文献   

2.
A systematic experimental and theoretical study of the origin of the enhanced photocatalytic performance of Mg‐doped ZnO nanoparticles (NPs) and Mg‐doped ZnO/reduced graphene oxide (rGO) nanocomposites has been performed. In addition to Mg, Cd was chosen as a doping material for the bandgap engineering of ZnO NPs, and its effects were compared with that of Mg in the photocatalytic performance of ZnO nanostructures. The experimental results revealed that Mg, as a doping material, recognizably ameliorates the photocatalytic performance of ZnO NPs and ZnO/graphene nanocomposites. Transmission electron microscopy (TEM) images showed that the Mg‐doped and Cd‐doped ZnO NPs had the same size. The optical properties of the samples indicated that Cd narrowed the bandgap, whereas Mg widened the bandgap of the ZnO NPs and the oxygen vacancy concentration was similar for both samples. Based on the experimental results, the narrowing of the bandgap, the particle size, and the oxygen vacancy did not enhance the photocatalytic performance. However, Brunauer–Emmett–Teller (BET) and Barret–Joyner–Halenda (BJH) models showed that Mg caused increased textural properties of the samples, whereas rGO played an opposite role. A theoretical study, conducted by using DFT methods, showed that the improvement in the photocatalytic performance of Mg‐doped ZnO NPs was due to a higher electron transfer from the Mg‐doped ZnO NPs to the dye molecules compared with pristine ZnO and Cd‐doped ZnO NPs. Moreover, according to the experimental results, along with Mg, graphene also played an important role in the photocatalytic performance of ZnO.  相似文献   

3.
Yttrium doped boehmite nanofibers with varying yttrium content have been synthesized at low temperatures using a soft-chemistry route in the presence of polyglycol ether surfactant. The effect of yttrium content, hydrothermal temperature on the growth of boehmite nanostructures was systematically studied. Nanofibers were formed in all samples with varying doped Y% treated at 100 °C; large Y(OH)3 crystals were also formed at high yttrium doping. Treated at an elevated temperatures resulted in a remarkable changes in size and morphology for samples with the same doped Y content. The resultant nanofibers were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy-dispersive X-ray analysis (EDX), N2 adsorption and thermogravimetric analysis. The detailed characterization and discussion on the Y doped nanostructures are presented.  相似文献   

4.
以非晶硼和氧化镍纳米颗粒为原料,在氨气中1100℃下合成了毛刺状竹节结构的氮化硼纳米管. 利用X射线衍射和透射电镜研究了氮化硼纳米管的结构和形貌. 竹节结构纳米管表面的毛刺是六方氮化硼的纳米薄片. 提出了一种基于固态硼和气态二氧化硼扩散的毛刺形貌生长机理.  相似文献   

5.
The controlled synthesis of nickel oxide nanoparticle (NiO NPs) were synthesized by homogeneous precipitation method and have been characterized using UV–visible spectrophotometer, fourier transform-infrared spectroscopy, X-ray diffraction, atomic force microscope, scanning electron microscope and high resolution-transmission electron microscope. The synthesized NiO NPs was spherical in shape with an average size ranged between 3 and 5 nm. Subsequently, synthesis of NiO NPs coated on a bacterial nanowires (BNWs) film pre-cast on a glassy carbon electrode surface and the morphology and nature of the prepared composite was characterized using HR-TEM. The electro-chemical behavior of NiO NPs coated bacterial nanowires (NiO NPs-BNWs) was observed using cyclic voltammetry, linear sweep voltammetry and electrochemical impedance spectroscopy analysis. Highly comparable electrochemical conductivity of NiO NPs-BNWs was observed in this study. The BNWs sample exhibited a polarization resistance (Rp) to be 4457 Ω and the NiO NPs-BNWs sample exhibited polarization resistance (Rp) about 2270.4 Ω. The BNWs exhibited a CPE-T value to be 6.26 µF cm?2 and the NiO NPs-BNWs sample exhibited CPE-T to be 9.32 µF cm?2. The enhancement of peak currents is ascribed to the short heterogeneous electron transfer among the NiO NPs-BNWs. The defined nanolayer provides a novel platform for the next generation electrochemical applications.  相似文献   

6.
NiO-loaded NaTaO(3) doped with lanthanum showed a high photocatalytic activity for water splitting into H(2) and O(2) in a stoichiometric amount under UV irradiation. The photocatalytic activity of NiO-loaded NaTaO(3) doped with lanthanum was 9 times higher than that of nondoped NiO-loaded NaTaO(3). The maximum apparent quantum yield of the NiO/NaTaO(3):La photocatalyst was 56% at 270 nm. The factors affecting the highly efficient photocatalytic water splitting were examined by using various characterization techniques. Electron microscope observations revealed that the particle sizes of NaTaO(3):La crystals (0.1-0.7 microm) were smaller than that of the nondoped NaTaO(3) crystal (2-3 microm) and that the ordered surface nanostructure with many characteristic steps was created by the lanthanum doping. The small particle size with a high crystallinity was advantageous to an increase in the probability of the reaction of photogenerated electrons and holes with water molecules toward the recombination. Transmission electron microscope observations and extended X-ray absorption fine structure analyses indicated that NiO cocatalysts were loaded on the edge of the nanostep structure of NaTaO(3):La photocatalysts as ultrafine particles. The H(2) evolution proceeded on the ultrafine NiO particles loaded on the edge while the O(2) evolution occurred at the groove of the nanostep structure. Thus, the reaction sites for H(2) evolution were separated from those of O(2) evolution over the ordered nanostep structure. The small particle size and the ordered surface nanostep structure of the NiO/NaTaO(3):La photocatalyst powder contributed to the highly efficient water splitting into H(2) and O(2).  相似文献   

7.
In the present report, undoped and tin (Sn)‐doped lead sulfide thin films were synthesized via chemical bath deposition method. The effects of Sn molar concentration on the optical, structural, and morphological properties were systematically studied. The concentration of Sn in the chemical bath was characterized by the ratio of [Sn+2]/[Pb+2] and varied from 0 to 15 at.%. Both doped and undoped thin films were polycrystalline in nature with a face‐centered cubic crystal structure; however, the preferred orientations of the crystallites were varied along the (111) and (200) planes with Sn‐doping concentration. The X‐ray powder diffraction results also showed that peak intensities and the crystalline size were decreased with increasing Sn concentration. The lattice constant varied with Sn concentration and found in the range of 6.020 to 5.944 Å. The variation of Sn concentration in PbS:Sn thin films were confirmed by energy dispersive X‐ray analyses study. The scanning electron microscope and atomic force microscopy studies revealed that Sn doping had a critical role on the surface roughness and morphology of the PbS:Sn thin films. The optical band gap study showed that the band gap of PbS:Sn thin films were engineered from 0.676 to 1.345 eV because of incorporation of Sn+2 ions via cost‐effective chemical route. Room temperature photoluminescence spectra showed a well‐defined peak at 427 nm and shoulders at 405 and 462 nm for all Sn‐doped and undoped PbS samples.  相似文献   

8.
Boron doped NiO films were prepared by sol–gel method. The effects of B content on the morphological and optical properties of NiO films were studied with atomic force microscopy, and optical characterization method. The average transmittance at the visible region is reached to 75 % for lower doped films (0.1 and 0.2 % B), whereas, the recorded average value of transmittance was about 62 % for doped film with 1 % B throughout the region. The optical energy gap value for pure NiO film was found to be 3.73 eV. These values were affected by B doping with non-monotonic variation and reached to 3.64 eV for 0.1 % B doped NiO. Also, the refractive index dispersion and dielectric constants of the NiO films were studied throughout the investigated range of wavelengths. The obtained results indicate that the optical parameters of the NiO film are controlled with boron doping.  相似文献   

9.
Fluorine doped SnO2 nanostructures were grown using ultrasonic assisted sol–gel method. The gel was obtained by dissolving stannous chloride in methanol with ammonium fluoride as dopant followed by irradiation with ultrasonic vibrations. Obtained samples were characterized by structural, morphological and optical studies. All the peaks in the X-ray diffractograms are identified and indexed as tetragonal cassiterite structure. Negative slope of Williamson–Hall plots indicates compressive strain. Particle size of SnO2 nanostructures is decreases with increases in concentration of fluorine doping. Atomic force microscopy, scanning electron microscopy and transmission electron microscopy studies confirm the formation of ring like porous structures and then hollow tube like growth with increase in the fluorine concentration. Peaks in Raman spectra also indicate strong confinement in SnO2 particles. Distinct peaks in the PL spectra make the structure suitable for photovoltaic applications.  相似文献   

10.
利用柠檬酸溶胶凝胶法成功合成了Cu2+掺杂的NdCoO3纳米材料,经粉末X射线衍射(XRD)和扫描电镜(SEM)表征后发现,所得掺杂NdCoO3纳米材料为纯相的立方钙钛矿结构,其尺寸约为80~200纳米。将改性前后的NdCoO3纳米材料分别制作成气敏元件并对其电性能和气敏性能进行了对比研究。结果发现,Cu2+的掺杂可以明显降低NdCoO3气敏元件的电阻、提高对H2S的灵敏度。表明这种改性的NdCoO3纳米材料将来有可能成为一种H2S敏感材料,也为NdCoO3纳米材料的应用提供了一条新颖的途径。  相似文献   

11.
A facile and eco-friendly sonochemical route to fabricate well-defined dentritic (rotor-like) ZnO nanostructures from 1D ZnO nanorods without alloying elements, templates and surfactants has been reported. Phase and structural analysis has been carried out by X-ray diffraction (XRD) and Fourier Transform Infra-Red (FTIR) spectroscopy, showed the formation of hexagonal wurtzite structure of ZnO. Scanning electron microscopic (SEM) study showed the formation of rotor-like ZnO nanostructure having a central core which is surrounded by side branches nanocones. Transmission electron microscopic (TEM) study showed that these nanocones grow along [0001] direction on the six {01–10} planes of central core ZnO nanorods. A plausible formation mechanism of rotor-like ZnO nanostructures was studied by SEM which indicates that the size and morphology of side branches can be controlled by adjusting the concentration of OH? ions and time duration of growth. The photoluminescence (PL) spectrum of the synthesized rotor-like ZnO nanostructures exhibited a weak ultraviolet emission at 400 nm and a strong green emission at 532 nm recorded at room temperature. The influence of morphology on the origin of green emission was discussed in detail. The results suggested a positive relationship among polar plane, oxygen vacancy and green emission.  相似文献   

12.
The Silver Sulfide (Ag2S) nanostructures were synthesized via the facile co-precipitation method. Thorough study and analysis were carried out to reveal and compare the structural, optical, functional, and morphological characteristics of as-synthesized samples annealed at various temperatures. The XRD analysis characterized the structural properties of Ag2S nanoparticles, which unveiled the excellent crystallinity and monoclinic structure. The as-synthesized samples show an average crystallite size of 52 nm–41.7 nm. The modes of vibration and peak position of metal sulfides in Ag2S nanoparticles were investigated through the FTIR technique. The optical attributes of prepared samples were scrutinized using UV–Vis analysis, which portrays the cut-off wavelength in the range of 1192–1223 nm for non-annealed and annealed Ag2S nanoparticles, alongside the optical band gap is about 0.86 eV–0.96 eV. This work elucidates a novel approach to synthesis and scrutinises the characteristics of Ag2S nanoparticles by subjecting them to distinct annealing temperatures precisely, as-prepared, 200 °C and 400 °C.  相似文献   

13.
A typical Li+ substituted NiO compound, Li0.29Ni0.71O, was synthesized by molten nitrate method. The effects of Li+ substitution on the structure and magnetic properties of NiO were investigated. X-Ray diffraction(XRD), scanning electron microscope(SEM) and high-resolution transmission electron microscope(HRTEM) analyses confirm the cubic structure of Li0.29Ni0.71O, with a primary particle size of 150 nm. Analysis of the Ni X-ray photoelectron spectroscopy(XPS) shows the transformation from Ni2+ to Ni3+ induced by Li+ substitution. Two magnetic transitions were observed at 225 and 55 K which were assigned to the ferrimagnetic ordering and spin glass transition, respectively. The different magnetic behavior with respect to that of NiO was attributed to the break of superexchange interaction Ni2+-O-Ni2+ and the formation of different spin clusters after non-magnetic Li+ doping.  相似文献   

14.
Pure and antimony (Sb) doped CdO films were grown using sol–gel spin coating technique. The structural properties of the films were investigated using atomic force microscopy. The structure of CdO film is converted from microrods to nanorods with Sb dopant. The analysis of optical absorption revealed that optical bandgap of the films changes with doping. The optical bandgap for 0.1, 0.5, 1.0, and 2.0% Sb doped CdO was determined to be 2.28, 2.30, 2.56, and 2.42 eV, respectively. Other optical constants such as refractive index, extinction coefficient, and dielectric constants were calculated using the optical data. The refractive index dispersion of the films obeys the single oscillator model. The volume and surface energy loss functions were calculated and observed to increase with increase in the photon energy.  相似文献   

15.
《Electroanalysis》2017,29(12):2803-2809
Here we report the synthesis of NiO nanostructures via glyoxomat assisted precipitation protocol using hydrothermal route under the influence of ammonia followed by annealing at 450 oC. These nanostructures were characterized via Scanning Electron Microscopy (SEM) and X‐ray Diffraction (XRD) method. The morphological investigation of the finally prepared NiO revealed foam‐like porous nanostructures. These NiO nanostructures were immobilized onto glassy carbon electrode (GCE) with nafion as binding material and used as highly sensitive and selective sensor for determining hydrazine in the range of 100–500 nM and 600–1600 nM with a calculated limit of detection (LOD) equal to 5 nM. The as prepared sensor was tested for the presence of various interfering species such as Na+, Cu2+, uric acid, hydrogen peroxide and glucose in the presence of equimolar concentration of hydrazine and negligible interference was noticed. The sensor was further tested for hydrazine detection using square wave voltammetry (SWV) however it only worked in the range of 50–1200 μM. Finally the sensor was successfully implemented for hydrazine determination in real water samples using amperometric protocol.  相似文献   

16.
Nanobelts, flower-like and rhizoid-like nanostructures of pure polyaniline (PANI) doped with sulfuric acid or hydrochloric acid were prepared via electrospinning by using a coagulation bath as the collector after optimizing the fabrication parameters. The morphologies of these nanostructures were characterized by scanning electron microscope (SEM). The possible formation mechanisms were discussed.  相似文献   

17.
锰氧化物是一类重要的且具有广泛应用背景的材料,控制合成不同形貌和组成的锰氧化物纳米结构将有助于拓宽其应用领域.本文报道了以Mn3O4为前驱体,通过水热法控制合成MnO2纳米结构的方法.用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)等手段对产物进行表征.在硫酸体系中,当反应温度为80和180℃时,所得产物分别为γ-MnO2海胆结构和β-MnO2单晶纳米棒.此外,MnOOH纳米线可以在稀酸溶液中合成.考察了反应温度、溶液酸度、反应时间对产物结构的影响,并提出了基于γ-MnO2为中间产物的反应机理.实验结果表明,水热体系促进了产物的各向异性生长并最终形成不同形貌和结构的锰氧化物.  相似文献   

18.
Synthesis of Gd doped Srx O: CdO (x = 1.4, 1.6, 1.8) nanostructures (NS) was achieved through the coprecipitation method by using CTAB (cetyl trimethyl ammonium bromide) with the purpose to investigate the effect of Gd doping on the optical, structural, morphological, and photoluminescence properties at room temperature. Mixed phase of tetragonal crystal structure verified via X-ray diffraction technique, no structural variation was observed except lattice distortion. Size of the crystallites (D), morphology studied by SEM (scanning electron microscopy) analysis, nanoparticles (NPs) crystalized roughly flake-like morphology with homogeneous particle distribution centered at ~ 78 nm, ~56 nm, ~65 nm, ~88 nm for pure and Gd (x-1) doped Sr xO: CdO nanostructure, respectively. Fourier transform infrared spectroscopic investigation (FTIR) revealed the presence of Gd–O–Gd, Cd–O, Sr–O, and OH peaks appeared at ~1321 cm ?1, ~1550 cm ?1, ~1400 cm ?1–3300 cm ?1 with small variation in vibration modes due to Gd doping. Optical absorptivity observed in the range of 325 nm–359 nm (redshifted) with absorption edges at 346 nm, 364 nm, and 380 nm for Gd (x-1) doped Sr xO: CdO nanostructure, respectively. This redshift on the bandgap was discussed in terms of new band levels below conduction band. The energy gap was calculated using Kubelka-Munk theory and was found to be in the range of 3.22 eV–2.61 eV. X-ray photoelectron spectroscopy (XPS) performed to determine chemical composition and binding energies of Gd 3d 3/2, Sr 3d 3/2, and Cd 3d 3/2, O1s, and C1s observed at 150.8 eV, 141.6 eV, 411.0 eV, 530.4 eV, and 285.6 eV indicating Gd+3 ion replaces Sr+2 in all concentrations. Our results showed that Gd-doped Sr xO: CdO nanoparticles exhibited enhanced photoluminescence (PL) properties in contrast to the pure Gd2O3 with Gd+3 randomly incorporated into crystal structure, probably in tetrahedral sites. The composition of Gd 0.6 doped Sr x O: CdO NS exhibited photoluminescent emission spectra, peaks centered at 433 ± 3 nm, 449 ± 3 nm, and 469 ± 2 nm (λ excitation = 318 nm) and for Gd 0.8 doped Sr x O: CdO nanostructure showed broad emission peak at 412 ± 2 nm to 433 ± 2 nm (λ excitation = 380 nm), which indicates a reduction in defects with an increase in Gd doping. The transitions can be ascertained with shielding of 4f shells of Gd +3 ions by 6s, 5d shells by the interaction of other Gd +3 ions.  相似文献   

19.
NiO is one of the most important candidates for semiconductors metal oxide nanocrystals by the arrangement of photocatalytic application. However, the photocatalytic performance of biosynthesized nanocrystals using Aspalathus linearis (Burm.f.) R. Dahlgren has not been investigated yet. In this contribution, we synthesize α-Ni(OH)2 using an A. linearis. A heat treatment of the α-Ni(OH)2 is carried out at 300–400°C for 2?h at normal air yields. Furthermore, we have characterized the structural, optical and photocatalytic activity of the samples. The optical results indicate that biosynthesized nanocrystals exhibit UV–visible light absorption and a narrow range distribution of intense green light (518.95?nm) emission, which decreases significantly as annealing temperature increases. The bandgap energies of the sample annealed at 300–400°C shift to lower photon energy, compared to bulk NiO (~ 4?eV). Moreover, the photocatalytic experimental results reveal that NiO nanocrystals enable color switching of methylene blue.  相似文献   

20.
以聚乙烯醇缩丁醛(PVB)为有机掺杂剂,正硅酸乙酯为前驱体,氨水为催化剂,利用溶胶-凝胶法制备出了一种新型的有机无机复合二氧化硅增透膜。采用红外光谱、X射线衍射、粒度分析、紫外分光光度法、椭偏测定、原子力显微镜、静滴接触角测量等对膜层性质进行了表征。结果表明:PVB分子的引入并没有引起增透膜结构的变化。在相同的实验条件下,未经PVB掺杂的SiO2增透膜在720 nm处的峰值透过率为99.8%,而PVB掺杂后的SiO2复合膜在840 nm处的峰值透过率在99.9%以上。掺杂膜层变厚,峰值透过率朝长波方向移动。掺杂前后增透膜对水的接触角从29°增加到71°,膜层的疏水性得到明显提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号