首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Unbonded silicon oxynitride and silica high‐performance liquid chromatography stationary phases have been evaluated and compared for the separation of basic compounds of differing molecular weight, pKa, and log D using aqueous/organic mobile phases. The influences of percentage of organic modifier, buffer pH, and concentration in the mobile phase on base retention were investigated on unbonded silicon oxynitride and silica phases. The results confirmed that unbonded silicon oxynitride and silica phases demonstrated excellent separation performance for model basic compounds and both the unbonded phases examined possessed a hydrophobic/adsorption and ion‐exchange character. The silicon oxynitride stationary phase exhibited high hydrophilicity compared with silica with a reversed‐phase mobile phase. An ion‐exclusion‐type mechanism becomes predominant for the separation of three aimed bases on the silicon oxynitride column at pH 2.8. Different from silicon oxynitride stationary phase, no obvious change for the retention time of three model bases on silica stationary phase at pH 2.8 can be observed.  相似文献   

2.
Abstract

Nine representative drugs were used to evaluate the effects of alkyl bonded stationary phases containing type A and type B silica and the effects of an amine modifier on the efficiency of high performance liquid chromatographic elution of basic and acidic drugs. The theoretical plate count and asymmetry factor of the eluted peaks were compared to that of acetophenone as a reference to the maximal efficiency of each system evaluated. ZorbaxR C8 was used as the stationary phase prepared from type A silica and Zorbax RXR was used as the stationary phase prepared from the type B silica. The theoretical plate count and asymmetry factor of acetophenone was observed to be the same on both columns when analyzed in an acidic aqueous/acetonitrile mobile phase. An improvement in the efficiency and peak shape of the amine containing compounds was observed using the Zorbax RXR stationary phase as compared to the efficiency and peak shape of these compounds on the ZorbaxR C8 stationary phase. Interestingly, the acidic compounds salicylic acid and mefenamic acid showed better peak shapes on the Zorbax RXR column than on the Zorbax C8. For all drugs studied the theoretical plate count and asymmetry factor was better on both the ZorbaxR C8 and the Zorbax RXR stationary phases when the amine modifier triethylamine was used in the mobile phase. Except for salicylic acid, the theoretical plate count and asymmetry factor for each drug was similar on the ZorbaxR C8 and the Zorbax RXR columns when the amine modifier  相似文献   

3.
A new reversed stationary phase was prepared, based on thermal immobilization of trimethoxysilylpropyl modified polyethyleneimine onto silica particles endcapped with octadecyl molecules. The physicochemical and morphological properties of the stationary phase were characterized by solid state cross-polarization and magic angle spinning 29Si nuclear magnetic resonance, infrared spectroscopy, porosimetry, and elemental analysis. For the studies on reversed phase high-performance liquid chromatography (HPLC) retention, separation of the established Tanaka and Engelhardt test mixtures was performed. The stationary phase showed a typical partition mechanism for the reversed phase; however, the low hydrophobicity required a low organic content solvent in the mobile phase for chromatographic separation of more hydrophobic compounds. The stationary phase also showed low residual silanol activity for the elution of basic compounds due to the protection offered by octadecyl endcapped molecules and the competition provided by the imine groups of the polymeric layer. The proposed stationary phase possesses interesting selectivity and is convenient for applications requiring the separation of more retentive compounds in conventional HPLC columns using more aqueous mobile phases.  相似文献   

4.
New orthoconic antiferroelectric liquid crystalline materials were synthesised and characterised in their racemic forms and as (S) enantiomers. The materials possess oligo-methylene spacers of different lengths in semi-fluorinated achiral chains and lateral substitution by fluorine at two different positions of the molecular core. For comparison purposes, analogical materials without fluorine lateral substitutions were also prepared. Polysaccharide chiral stationary phases based on two different chiral selectors were used for the separation of the enantiomers of the individual racemic mixtures by high-performance liquid chromatography. A baseline separation of (S) and (R) enantiomers was obtained for four of the six studied liquid crystalline materials. Two of the materials were partially separated under the optimised separation conditions. The elution order of the individual enantiomers in the racemic mixtures was successfully assigned, as pure (S) enantiomers of all the studied materials were available. Both the position of the fluorine atom within the molecular core and the size of the achiral moiety had significant effects on the separation of the individual enantiomers of the studied compounds. Moreover, it was also found that the structure of the chiral stationary phase selector significantly influenced the enantiomeric resolution.  相似文献   

5.
In this study, the retention and selectivity of a mixture of basic polar drugs were investigated in hydrophilic interaction chromatographic conditions (HILIC) using nano-liquid chromatography (nano-LC). Six sympathomimetic drugs including ephedrine, norephedrine, synephrine, epinephrine, norepinephrine and norphenylephrine were separated by changing experimental parameters such as stationary phase, acetonitrile (ACN) content, buffer pH and concentration, column temperature. Four polar stationary phases (i.e. cyano-, diol-, aminopropyl-silica and Luna HILIC, a cross-linked diol phase) were selected and packed into fused silica capillary columns of 100 μm internal diameter (i.d.). Among the four stationary phases investigated a complete separation of the all studied compounds was achieved with aminopropyl silica and Luna HILIC stationary phases only. Best chromatographic results were obtained employing a mobile phase composed by ACN/water (92/8, v/v) containing 10 mM ammonium formate buffer pH 3. The influence of the capillary temperature on the resolution of the polar basic drugs was investigated in the range between 10 and 50 °C. Linear correlation of ln k vs. 1/T was observed for all the columns; ΔH° values were negative with Luna HILIC and positive with aminopropyl- and diol-silica stationary phases, demonstrating that different mechanisms were involved in the separation.To compare the chromatographic performance of the different columns, Van Deemter curves were also investigated.  相似文献   

6.
《Analytical letters》2012,45(15):3355-3372
ABSTRACT

A new p-fert-butyl-calix[8]arene-bonded silica gel stationary phase was synthesized through heterogeneous functionalisation of suspended porous silica. A characterization of its structure was carried out by using elemental analysis, FTIR and 13C solid state NMR spectroscopy. Chromatographic performance of the new packing material was investigated by employing polycyclic aromatic hydrocarbons (PAHs) as probes and using methanol-water as mobile phase. The investigations show that the new stationary phase behaves as a reversed phase stationary phase. The liquid chromatographic separation of PAHs solutes on the new bonded phase was compared with that on a p-tert-butyl-calix[4]arene-bonded silica stationary phase. The new p-tert-butyl-calix[8]arene-bonded phase exhibited higher retention and better separation selectivity, although the carbon content and coverage of the new packing material was lower than that of the p-tert-butyl-calix[4]arene bonded silica stationary phase. A possible retention mechanism for the new packing material was also proposed.  相似文献   

7.

A set of 31 structurally different chiral pharmaceutical compounds was used as model analytes for investigation of the enantioselective potential of two immobilized polysaccharide-based chiral stationary phases under normal and reversed phase separation conditions. These chiral stationary phases differed in the polymeric backbone, amylose or cellulose, but possessed the same derivatization functionality. The results showed that the tris(3,5-dimethylphenylcarbamate) of amylose and cellulose have very broad, and often complementary, enantiorecognition abilities. In general, normal phase separation mode seemed to be more advantageous for separation of the majority of studied pharmaceuticals no matter if amylose- or cellulose-based columns were used. However, in certain cases the reversed phase separation system yielded better results. The combination of these two immobilized chiral stationary phases offers a powerful tool for enantioseparation of different types of pharmaceuticals in the normal and/or reversed phase mode.

  相似文献   

8.
Abstract

Alkylsulfonate (RSO3 ?) salts were evaluated as mobile phase additives for the separation of free amino acids on reverse stationary phases using an acidic mobile phase where the amino acids are cations. The enhanced amino acid retention is the result of two major interactions, one being retention of the RSO3 ? salt on the stationary phase and the other an ion exchange selectivity between the amino acid analyte cation and the RSO3 ? countercation, or other countercations in the mobile phase. Major mobile phase variables are: type and concentration of RSO3 ? salt (the studies focused on C8SO3 ? salts), presence of organic modifier, type of countercation present, and mobile phase pH and ionic strength. Alkyl modified silica and polystyrenedivinyl-benzene copolymeric reverse stationary phases were compared. A mobile phase gradient, increasing per cent organic modifier was shown to be best, is necessary for separating complex mixtures of polar and nonpolar or basic amino acids. The procedure is applicable to the identification and/or determination of amino acids in mixtures or in peptides after hydrolysis.  相似文献   

9.
ABSTRACT

A series of fluorine tail-terminated alkoxy and alkyl cyanobiphenyl compounds and some cyano-p-terphenyl derivatives were synthesised and mesogenic properties described. Comparison with the non-fluorinated K series and M series indicates that the terminal fluorine atom generally decreases the transition temperatures and, more interestingly, depresses the formation of a smectic phase. Several binary LC mixtures formed by the fluorine tail-terminated compounds were found exhibiting promising room temperature nematic phases with wide ranges. The mixture F7OCB and F8OCB shows homeotropic ordering at the metal salts-decorated surfaces and planar ordering at the free surface, which may have potential application in designing a more sensitive and faster LC system to targeted analytes.  相似文献   

10.
Studzi&#;ska  S.  Buszewski  B. 《Chromatographia》2012,75(21):1235-1246

The retention of fifty structurally different compounds has been studied using linear solvation energy relationships. Investigations were performed with the use of six various stationary phases with two mobile phases (50/50 % v/v methanol/water and 50/50 % v/v acetonitrile/water). Packing materials were home-made and functionalized with octadecyl, alkylamide, cholesterol, alkyl-phosphate and phenyl molecules. This is the first attempt to compare all of these stationary phases synthesized on the same silica gel batch. Therefore, all of them may be compared in more complex and believable way, than it was performed earlier in former investigations. The phase properties (based on Abraham model) were used to the classification of stationary phases according to their interaction properties. The hydrophilic system properties s, a, b indicate stronger interactions between solute and mobile phase for most of the columns. Both e and v cause greater retention as a consequence of preferable interactions with stationary phase by electron pairs and cavity formation as well as hydrophobic bonds. However, alkyl-phosphate phase has different retention properties, as it was expressed by positive sign of s coefficient. It may be concluded that most important parameters influencing the retention of compounds are volume and hydrogen bond acceptor basicity. The LSER coefficients showed also the dependency on the type of organic modifier used as a mobile phase component.

  相似文献   

11.
This study describes the use of stationary phases with polar functionality suitable for the chemical analysis of carbamates pesticides and comparing with conventional alkyl C8 and C18 phases. The emphasis of this study was to compare the selectivity and retention of the pesticides on different stationary phases, bonded onto 1.7 μm partially porous silica particles under isocratic separation condition. Four stationary phases including: phenylaminopropyl (PAP) phase, bidentate propylurea-C18 (BPUC18), C8 and C18, were successfully bonded on the partially porous silica spheres as evidenced by 29Si and 13C solid-state NMR analysis. The phenylaminopropyl phase exhibited smaller retentivity and enhanced selectivity compared to the alkyl C8 phase; the analysis time to run separation of the six carbamate pesticides (i.e., methomyl, propoxur, carbofuran, carbaryl, isoprocarb, and promecarb) on the PAP phase was threefold faster than alkyl C8 phase. In a similar manner, the BPUC18 phase shows similar selectivity to that of the PAP phase, but with longer retentivity; although the BPUC18 phase is characterized with a lesser degree of retentivity for the carbamate pesticides than the conventional alkyl C18 phase. We propose that π–π and weak polar interactions between the carbamate pesticides and the PAP phase dominates the separation mechanism and providing a superior selectivity; faster separation time was also achieved as a result of smaller retentivity. Whereas the C8 and C18 bonded phases exhibits only hydrophobic interactions with the pesticides, leading to larger retentivity. The BPUC18 phase is shown to interact via polar–polar interactions in addition to hydrophobic interactions with the pesticides, providing similar selectivity with the PAP phase but with larger retentivity.  相似文献   

12.
13.
A stationary phase (named QA C10) with quaternary ammonium embedded between a propyl and a decyl chain was synthesized by immobilization of N,N‐dimethyldecylamine on chloropropyl–silica surface. A set of representative neutral, basic, and acidic compounds was employed to evaluate its chromatographic properties. The results illustrated that QA C10 was a mixed‐mode stationary phase possessing both hydrophobic and ionic characteristics. The QA C10 stationary phase was further used for selective separation of alkaloids from Cortex phellodendri. Under acidic condition, alkaloids could be eluted in first 8 min, while other neutral and acidic fractions were retained better on QA C10 column. Then, obtained alkaloid fraction was analyzed by LC‐MS/MS and 22 alkaloids were identified. Our study confirmed the advantages and application potential of the QA C10 stationary phase for alkaloids separation.  相似文献   

14.
吸附固定相开管毛细管电色谱方法的建立(英文)   总被引:3,自引:0,他引:3  
刘震  邹汉法  叶明亮  倪坚毅  张玉奎 《色谱》1999,17(3):245-248
 首次将管壁吸附作用作为开管毛细管电色谱固定相制备的推动力,成功地建立了称为“吸附固定相开管毛细管电色谱”的一种新方法。原理是:选择合适的条件,让荷正电的化合物在毛细管管壁上充分吸附,直接用吸附层作为固定相。目前,已有数类化合物被用作固定相物质,其中包括阳离子表面活性剂如十六烷基三甲基溴化铵(CTAB)、碱性蛋白质如溶菌酶和细胞色素C、碱性小肽如赖氨酸-酪氨酸和赖氨酸-丝氨酸-酪氨酸、以及碱性氨基酸如L-赖氨酸。CTAB吸附固定相用于分离电中性化合物,其它吸附固定相用于手性分离。  相似文献   

15.
Three n-octadecylphosphonic acid-modified magnesia-zirconia reversed stationary phases (C18PZM) are prepared via the strong Lewis base interactions between organophosphonate and magnesia-zirconia composite. And two of them are end-capped by using trimethylchlorosilane as end-capping agent in different procedures. Stability studies at extreme high pH conditions (pH 9-12) show that both the non-endcapped and endcapped columns are quite stable at pH 12 mobile phase. The reversed-phase liquid chromatographic behavior of three C18PZM stationary phases are comparatively investigated in detail using a variety of basic compounds as probes. The retention of basic compounds on the three phases is studied over a wide range of pHs. And the possible retention mechanisms of basic compounds on the three stationary phases are discussed. The results show that the basic solutes retain by a hydrophobic and cation-exchange interaction mixed mechanism on three stationary phases when they are operated in eluents at pH values near to the pKa of the Brönsted conjugate acid form of the analyte, suggesting that inherent zirconol groups on ZM are not expected to interact with bases via cation-exchange interaction at lower pH. Nonetheless, the non-endcapped phase differs markedly from the edncapped ones in retention and selectivity of basic solutes using eluents at pH 4.1, implying a complex retention mechanism at this pH. The cation-exchange sites under such conditions are more likely due to the adsorbed Lewis base anionic buffer constituents (acetate) on accessible ZM surface sites than the chemisorbed phosphonate. Although the three phases exhibit very similar chromatographic behavior with eluents at pH 10.1, and show in general satisfactory separation of basic compounds and alkaloids studied, the performance for a specific analyte, however, differs largely from column to column.  相似文献   

16.
Abstract

The reverse phase HPLC separation of polycationic viologenes 1 – 4 and macrotricyclic quaternary ammonium salts 5 – 8 using ion pair conditions is described. Whereas the compounds 1 – 4 could be analysed on any of 4 stationary RP-18 phases tested, the cage compounds 5 – 8 were much more sensitive to the source of the matrix material. Optimal separation conditions for the latter up to eightfold positively charged macrocycles employ sodium perchlorate in acidic aqueous methanol using Nucleosil RP-18 or Lichrospher CH-18 columns.  相似文献   

17.
A quercetin‐bonded silica gel stationary phase (QUSP) containing natural flavonoid ligand was first prepared via γ‐glycidoxypropyltrimethoxysilane (KH‐560) as a coupling reagent for high‐performance liquid chromatography. Its chemical structure was characterized by Fourier infrared spectroscopy, elemental analysis, thermal thermogravimetry and 13C cross polarization/magic angle spinning nuclear magnetic resonance (CP/MAS NMR). The chromatographic property of QUSP was systematically evaluated by using neutral, basic and acidic aromatic compounds as probes. In order to clarify its retention mechanism, a comparative study of QUSP with conventional octadecylsilyl‐bonded stationary phase (ODS) was also carried out under the same conditions. The results showed that the new quercetin‐bonded phase exhibited an excellent reversed‐phase chromatographic property with relatively weak hydrophobicity. However, it has an advantage over ODS in the fast separation of polar aromatic compounds because the quercetin ligand could provide various sites besides hydrophobicity, such as hydrogen bonding, dipole‐dipole, π‐π staking and charge transfer interactions. QUSP was performed in the baseline separations of ionized polar basic or acidic compounds, including pyridines, anilines, pyrimidines, purines and phenols with symmetric peak shape in common mobile phases without buffer salt within relatively short time. The natural ligands from herbs are readily available and contain a variety of active sites, which facilitate the exploration of industrial chromatographic separation materials for green products.  相似文献   

18.
A HPLC stationary phase that possesses an internal thiocarbamate functional group is described. The new C18-thiocarbamate silane was synthesized by the reaction of a trifunctional alkoxysilane with a mercaptan. The silylant agent was bonded to silica (5 μm) and the new stationary phase was then endcapped. Surface characteristics of the packing before and after chemical modification with HMDS and TMCS were determined by different physico-chemical methods, such as elemental analysis and infrared and solid-state 13C and 29Si nuclear magnetic resonance spectroscopies. Chromatographic properties of the C18-thiocarbamate silica were evaluated under reversed phase conditions by separation of four different test mixtures that including compounds from the Engelhardt, Tanaka, and Neue test mixtures. Chromatographic evaluations of the C18-thiocarbamate phase show promising results for the separation of basic analytes.  相似文献   

19.
Fluorinated porous materials, which can provide specific fluorine-fluorine interaction, hold great promise for fluoride analysis. Here, a novel fluorinated covalent-organic polymer was prepared by using 2,4,6-tris(4-aminophenyl)-1,3,5-triazine and 2,3,5,6-tetrafluorotelephtal aldehyde as the precursors and introduced as stationary phase for open-tubular capillary electrochromatography. The as-synthesized fluorinated covalent-organic polymer and the modified capillary column were characterized by infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectrometry. Based on strong hydrophobic interaction and fluorine–fluorine interaction provided by fluorinated covalent-organic polymer coating layer, the modified column showed powerful separation selectivity toward hydrophobic compounds, organic fluorides, and fluorinated pesticides. Additionally, the fluorinated covalent-organic polymer with good porosity and regular shape was uniformly and tightly coated on the capillary inner wall. The obtained highest column efficiency could reach up to 1.2 × 105 plates⋅m−1 for fluorophenol. The loading capacity of the modified column can reach 141 pmol for trifluorotoluene. Besides, the relative standard deviations of retention times for intraday run (n = 5), interday run (n = 3), and between columns (n = 3) were all less than 2.55%. Significantly, this novel fluorinated material-based stationary phase shows great application potential in fluorides analysis.  相似文献   

20.
《Electrophoresis》2018,39(2):348-355
A new single‐urea‐bound chiral stationary phase based on 3,5‐dimethylphenylcarbamoylated β‐cyclodextrin was prepared through the Staudinger reaction of mono (6A‐azido‐6A‐deoxy)‐per(3,5‐dimethylphenylcarbamoylated) β‐cyclodextrin and 3‐aminopropyl silica gel under CO2 atmosphere. The new phase exhibited good enantioseparation performance for 33 analytes using normal‐phase HPLC conditions; 19 of them were baseline separated. Effects of structure of analytes, alcoholic modifiers, and acidic/basic additives on separation performances of this new cyclodextrin chiral stationary phase have been studied in detail. The results showed that the retention and resolution of acidic and basic analytes on the CSP were greatly affected by the additives. Peak symmetry for some analytes could be improved by simultaneously adding acidic and basic additives to the mobile phase. This work expands the potential applications of the cyclodextrin‐based chiral stationary phases in the normal‐phase HPLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号