首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用固相剪切碾磨技术制备了聚甲醛/聚氧化乙烯/二氧化硅(POM/PEO/SiO2)三元复合材料并实现其微型注塑加工,研究了POM/PEO/SiO2复合体系的微型注塑加工窗口、影响微型注塑加工过程充填行为的因素及其微型制品的复型行为。结果表明,POM/PEO/SiO2复合材料具有良好的微型注塑可加工性,根据其微型注塑加工窗口可获得复型良好的微型制品;POM/PEO/SiO2熔体在微型注塑过程中充模时间短,冷却速率快;注射速度和模腔温度对POM/PEO/SiO2体系的充填行为具有显著影响。此外,因纳米SiO2加入量较少,其对熔体充填行为的影响不大。  相似文献   

2.
结合固相剪切碾磨和分子复合技术制备了适合于微型注塑加工的聚乙烯醇/纳米羟基磷灰石(PVA/n-HA)复合材料,实现了n-HA含量达30%的PVA/n-HA复合材料的微型注塑加工。采用差示扫描量热法(DSC)、热重分析仪(TGA)和高压毛细管流变仪研究了PVA/n-HA复合材料的热性能和流变性能,结果表明:改性PVA/n-HA复合材料的熔点降低,热分解温度升高,获得120℃以上的热塑加工窗口;PVA/n-HA复合材料呈现剪切变稀特性,在高剪切速率下具有较低的熔体粘度,适合微型注塑加工,具有良好的充模性能。采用扫描电子显微镜(SEM)和X射线衍射(XRD)研究了PVA/n-HA微型注塑样品的结构与性能,结果表明n-HA均匀分散于PVA基体中,提高了复合材料的尺寸稳定性;受微型注塑过程中高剪切应力诱导结晶作用的影响,PVA/n-HA微型注塑样品的结晶度高于常规注塑样品的结晶度。  相似文献   

3.
本论文研究了原子转移自由基聚合法(ATRP)在纳米二氧化硅(SiO2)表面接枝聚丙烯酸丁酯(PBA)以及其对聚甲醛(POM)进行改性。红外光谱(FTIR)、透射电镜(TEM)及凝胶渗透色谱(GPC)等测试表明:采用ATRP法可制备均匀分散的SiO2-g-PBA纳米复合粒子。力学性能、扫描电子显微镜(SEM)及透射电子显微镜(TEM)等测试表明:纳米SiO2在POM中团聚明显,而SiO2-g-PBA纳米复合粒子POM中分散均匀,导致POM/SiO2-g-PBA纳米复合材料的缺口冲击强度明显高于POM及POM/SiO复合材料,当SiO2-g-PBA纳米复合粒子的质量分数为2%时,POM/SiO2-g-PBA复合材料的冲击强度是POM的8倍多,同时拉伸强度有一定的增加。  相似文献   

4.
采用原子转移自由基聚合法(ATRP)在纳米SiO2粒子表面接枝聚丙烯酸丁酯(PBA)制备了纳米复合粒子SiO2-g-PBA,并以此对聚甲醛(POM)进行改性. 通过红外光谱、热失重分析、透射电子显微镜及扫描电子显微镜等分析技术进行了表征. 结果,SiO2-g-PBA在POM中分散均匀,使POM/SiO2-g-PBA复合材料的缺口冲击强度明显高于POM及POM/ SiO2复合材料. 当SiO2-g-PBA纳米复合粒子的质量分数为2%时,POM/SiO2-g-PBA复合材料的冲击强度达71.2 kJ/m2,较纯POM提高了7倍多,同时拉伸强度也有一定的提高,达到68.1 MPa.  相似文献   

5.
以六氟异丙醇(HFIP)为聚甲醛(POM)与聚氧化乙烯(PEO)的共溶剂,通过溶液结晶研究了PEO分子量对POM/PEO 50/50晶/晶共混物结晶行为及结晶形态的影响。结果表明,PEO分子量越小,POM与PEO在结晶过程中相互干扰越大。当PEO分子量为4×103时,共混物中POM形成部分不完善晶体,出现明显的熔融双峰。SEM结果表明:含不同分子量PEO的共混晶体均无明显相分离,且低分子量PEO的共混物更易形成规整球晶,认为通过溶液结晶,POM/PEO 50/50共混物中POM与PEO形成了晶体相互穿插的结晶结构。  相似文献   

6.
研发一种包含电加热和水冷却的快速热循环成型技术,以改善采用超临界氮气为物理发泡剂的注塑微孔发泡聚甲醛(POM)盖板的表面质量.通过优化设计,整个模具型腔表面的温度均匀性得到明显改善.定量研究模腔表面温度(T_M)对注塑微孔发泡POM盖板的泡孔结构和表面质量的影响,并分析相关的机理.结果表明,提高T_M可减小微孔发泡POM盖板的未发泡皮层厚度,但使其泡孔的直径少量增加、分布均匀性降低.使T_M从40提高至150℃可明显改善微孔发泡POM盖板的表面质量、减小表面粗糙度达85%,而不会明显增加成型周期.T_M取150℃时可消除常规注塑微孔发泡存在的制品表面缺陷.T_M要适当高(约130℃)以在改善微孔发泡POM盖板表面质量的同时保持良好的泡孔结构.  相似文献   

7.
利用配备热台的偏光显微镜(POM)、红外光谱仪(FTIR)和示差扫描量热器(DSC)等实验方法研究了高氯酸锂(LiClO4)与聚氧化乙烯(PEO)之间的络合作用对PEO结晶行为和结晶形态的影响.DSC测试结果表明在LiClO4/PEO二元共混体系中,PEO的熔融温度、结晶温度随着锂盐含量的增加出现先增加后降低的现象;而结晶度则是先不变后降低.FTIR结果表明LiClO4影响聚合物结晶性能的原因是Li+能和PEO中的醚基的络合作用.POM观察结果发现LiClO4/PEO共混体系中存在聚合物的球晶,共混体系中聚合物的球晶生长速率都随着结晶温度的升高而下降,并且球晶生长速率还随着体系中随LiClO4含量的增加而减小.  相似文献   

8.
以多壁碳纳米管(MWCNTs)为导电填料、疏水纳米二氧化硅(SiO2)为非导电填料,填充不相容聚甲基丙烯酸甲酯(PMMA)/聚苯乙烯(PS)(1/1,V/V)共混物,制备(PMMA/SiO2)/(PS/MWCNTs)四元导电高分子复合材料(CPC),研究其导电逾渗与动态流变行为,并与PMMA/(PS/MWCNTs)三元CPC进行对比.发现三元、四元CPC具有类似的导电逾渗行为,且逾渗阈值显著低于PS/MWCNTs二元CPC.在四元CPC中,SiO2粒子可细化相区尺寸,提高熔体模量,但不影响熔体热处理过程中的依时性动态导电逾渗行为.MWCNTs与SiO2均显著影响熔体热处理中的依时性模量逾渗行为,分别缩短、延长四元CPC相粗化起始时间,但均延长相粗化时间区间.  相似文献   

9.
赵俊  袁安保  宋维相 《化学学报》2005,63(3):219-222
为了提高聚氧化乙烯(PEO)/KOH 基碱性聚合物电解质的电导率, 制电解质膜时分别将纳米 TiO2、纳米β-Al2O3和纳米 SiO2添加到 PEO/KOH 体系中, 制备出了兼顾电学和力学性能的碱性纳米复合聚合物电解质. 交流阻抗测试显示, 其室温(28 ℃)电导率可达到 10-3 S?cm-1数量级. 循环伏安研究表明, 制得的电解质膜在不锈钢惰性电极上的电化学稳定窗口约为 1.6 V. 分别研究了聚合物电解质膜中 KOH, H2O, 无机纳米粉末的含量以及温度对体系电导率的影响.  相似文献   

10.
P(MMA—MAA)/PEO氢键复合物的增容效应   总被引:1,自引:0,他引:1  
本文研究了P(MMA-MAA)/PEO氢键复合物对一些聚合物共混体系的增容效应。首次用机械共混方法制备了P(MMA-MAA)/PEO氢键复合物。该复合物不能被甲醇革取,其热失重行为不是其组分聚合物的加和,表明此复合物不是简单的共混物。实验结果证实,该复合物可以改进PMMA/PEO体系的相容性,改善PVC共混体系的力学性能和加工性能。  相似文献   

11.
PEO基纳米复合聚合物电解质电化学性质的研究   总被引:1,自引:1,他引:0  
杜洪彦  程琥  杨勇 《电化学》2004,10(2):215-221
以PEO8 LiClO4作母体,纳米SiO2为填料,制成PEO8 LiClO4 SiO2(x%)系列复合聚合物电解质,测定这该电解质的电导率、锂离子迁移数和电化学稳定窗口,并对其晶态结构作差热分析表征.结果表明,纳米SiO2的引入,显著提高了电解质的电导率,在22℃时达到4.3×10-5S·cm-1.此外,还探讨了填料对复合聚合物电解质电导率提高的影响机理.  相似文献   

12.
采用水辅助注塑(WAIM)设备,在不同的注水压力和熔体温度下制备了4种质量比(98/2,96/4,94/6和92/8)的聚丙烯/丙烯腈-苯乙烯共聚物(PP/SAN)共混物制品.采用偏光显微镜(POM)和扫描电子显微镜(SEM),研究了WAIM PP/SAN共混物制品的结晶形态和相形态.研究发现,高压水的穿透作用所引起的强剪切和快速冷却可诱导SAN在PP基体中原位成纤,并诱导PP在SAN纤维表面形成大量的晶核而最终形成横晶.SAN含量为4 wt%时,所形成横晶的含量随水压的提高而增加,随温度的降低而大幅增加.当SAN含量较低(2 wt%)时,制品中没有横晶形成.  相似文献   

13.
本文采用不同弹性体——热塑性聚氨酯(TPU)和聚乙烯弹性体乙烯-辛烯共聚物(POE)对聚甲醛(POM)进行增韧改性,研究了纯POM、POM/TPU (85/15)、POM/POE (85/15)三种体系的结晶行为和微观结构演变对材料力学性能的影响。结果表明,由于纯POM在结晶过程中能够形成较大的球晶,球晶边缘无定形区分子耗尽而形成微孔,这些微孔结构导致POM具有较差的缺口冲击强度。弹性体的加入可显著提高POM的结晶速率并大幅减小其球晶尺寸,因此有效减少了微孔数量,从而增加POM的韧性。比较而言,POM/TPU (85/15)的抗冲强度提升更为明显,主要原因在于二者良好的相容性和形成的大量细小球晶;而对于POM/POE体系,二者相容性差,且两者界面对球晶形貌起到了限制作用,因此降低了机械性能。  相似文献   

14.
聚乳酸/纳米SiO_2复合材料的熔融和冷结晶行为   总被引:2,自引:0,他引:2  
采用熔融共混法制备了聚乳酸(PLLA)/纳米SiO2复合材料;利用透射电镜观察了复合材料的微观形貌;利用差示扫描量热仪测定了该复合材料的熔融行为和非等温冷结晶行为;利用Jeziorny法和Mo法研究了PLLA及其复合材料的非等温冷结晶动力学.结果表明,纳米SiO2在PLLA基体中具有良好的分散性和异相成核作用,使得PLLA基体的结晶峰向低温方向移动;复合体系的熔融温度和熔融焓的变化与SiO2的加入量密切相关.采用Jeziorny法和Mo法均可以很好地处理复合材料的非等温冷结晶过程.  相似文献   

15.
利用型腔体积可控注塑发泡装备制备聚丙烯/无机纳米粒子微发泡复合材料,通过复合材料的流变行为和结晶行为,分析了无机纳米粒子对聚丙烯发泡行为的影响。结果表明:无机纳米粒子有促进气泡异相成核作用,同时无机纳米粒子引入可以提高聚丙烯黏弹响应和降温结晶起始温度,起到了抑制泡孔结构恶化的作用,显著改善了聚丙烯的泡孔结构;在聚丙烯材料中添加纳米CaCO3、纳米OMMT、纳米SiO2进行发泡,以PP/OMMT发泡材料的发泡质量最理想,其泡孔密度和尺寸分别为2×106个/cm3和24.2μm。  相似文献   

16.
本文用WAXD、PLM、DSC方法研究了聚氧化乙烯(PEO)/聚乙烯基吡咯烷酮(PVP)共混体系的结晶行为,探索了两组分聚合物间相互作用及体系结晶度与非晶组分含量的关系。DSC研究表明PEO/PVP共混体系具有两个玻璃化转变温度,分别是纯组分的T_g,无相容性。应用Avrami和LH方程对其动力学参数进行了研究。偏光显微镜观察了共混物结构形态。  相似文献   

17.
以高无机含量SiO2/聚甲基丙烯酸甲酯(PMMA)接枝复合材料为预分散母料,与PMMA树脂进行熔融共混,制得低无机含量的SiO2/PMMA复合材料.通过切片透射电镜(TEM)观察熔融共混过程中预分散母料内堆积SiO2粒子分散状态的演化.发现预分散母料接枝状态对其影响最为显著,不经接枝修饰的SiO2粒子经熔融共混后,不可避免地会在熔体中产生大量亚微米级的立体团聚体;复杂接枝预分散母料内构成以SiO2粒子为交联点的立体交联结构,其中的堆积SiO2粒子不能在剪切场中得到有效解离和释放;只有在使用简单接枝预分散母料时,基体高分子链才能不断地渗透扩散进入预分散母料内,而预分散母料可被不断地溶胀和撕裂,因而其中的堆积SiO2才可不断地向基体相迁移和扩散,并最终在整个复合材料内实现初级粒子形式的高度均匀稳定分散.  相似文献   

18.
采用偏光显微镜(POM)、差示扫描量热(DSC)和X 射线衍射,对聚氧乙烯(PEO)的形态结构和热物理行为随6种镧系盐对PEO的摩尔比变化的规律进行了系统的探讨.结果表明,随六合水氯化镧系盐摩尔比的增加,PEO球晶行为、熔点和熔融热均逐渐减弱,当盐对PEO的摩尔比达到一定值时(如YbCl3·6H2 O :PEO =2 0 ) ,则PEO完全不结晶.不同的镧系盐对PEO结晶的影响程度不同.X 射线衍射分析的结果也表明PEO晶面衍射峰随Ln3+ 盐摩尔比的增加而下降,与POM和DSC结果一致的.结果还表明较高的干燥温度(6 0℃)对PEO与Ln3+ 的相互作用有促进作用.对比二次降温的试样与原始试样的结晶行为,降温后结晶试样的特征表明络合在降温结晶后还存在.红外结果表明PEO与Ln3+ 的相互作用是络合作用.  相似文献   

19.
利用硅烷偶联剂KH560对气相法SiO2进行表面改性,对改性前后SiO2的堆积密度、表面结构与形貌进行了分析。而后采用熔融共混法将SiO2添加到回收PVB膜片中,比较SiO2改性前后复合材料的力学性能、微观形貌及动态流变行为。结果表明:改性后SiO2表面接枝上KH560,其堆积密度明显增加;改性SiO2与PVB之间存在明显的相互作用,可显著降低回收PVB膜片加工黏附性;SiO2改性前后复合材料拉伸性能与回收PVB膜片相比均稍有降低,而撕裂强度有所增加。  相似文献   

20.
PTFE/纳米SiO2复合材料的制备及其力学性能   总被引:1,自引:0,他引:1  
聚合物/纳米级无机粒子复合材料是纳米材料中的一种具有重要价值的新型材料,可广泛应用于橡胶、塑料、纤维三大合成材料之中。采用纳米级无机粒子填充聚合物基复合材料,可以在材料的补强、增韧等改性中获得良好的效果。本文以纳米SiO2为填料,将其经过有机处理后,制备了FIFE/纳米SiO2复合材料,并研究了纳米SiO2的含量对PTFE复合材料性能的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号