首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
富锂层状氧化物作为锂离子电池正极材料具有高比容量优势.采用草酸盐共沉淀法制备Li(Li0.22Ni0.17Mn0.61)O2,并用YF3包覆电极.采用X射线衍射(XRD)、扫描电子显微镜(SEM)和X射线能谱分析(EDS)表征材料结构、观察材料形貌.结果表明,材料颗粒尺寸在100~200 nm范围,YF3包覆不会改变材料结构和形貌.电化学恒流充放电测试表明,YF3包覆Li(Li0.22Ni0.17Mn0.61)O2电极的比容量,尤其倍率比容量明显提高.60 mA·g-1电流密度下包覆电极材料30周循环后其比容量保持在220 mAh·g-1以上,1500 mA·g-1电流密度下其比容量仍可达150 mAh·g-1.电化学阻抗谱(EIS)测试结果表明,YF3包覆电极电荷转移电阻和扩散阻抗均明显降低,有利于电化学性能改善.  相似文献   

2.
NiO/CNTs的制备及其电化学电容行为研究   总被引:1,自引:0,他引:1  
贾巍  徐茂文  雷超  包淑娟  贾殿赠 《化学学报》2011,69(15):1773-1779
用改良的沉淀法在酸化处理过的碳纳米管(CNTs)上沉积氢氧化镍, 经300 ℃热分解得到NiO/CNTs复合电极材料. 采用X射线衍射(XRD)、热重分析(TGA)、扫描电镜(SEM)和Brunauer-Emmett-Teller (BET)比表面积分析等方法对合成的材料进行了物理表征|用循环伏安法和充放电测试对其电化学性能进行了研究. 结果表明, CNTs的引入在一定程度上提高了NiO的分散性, 从而大大增加了复合电极材料的比电容和倍率容量. 掺入20% CNTs后复合电极的比电容达到最高值(309 F•g-1)|掺入40% CNTs的复合电极材料扣除CNTs对容量的贡献后(本实验测试CNTs的比容量为35 F•g-1), NiO的放电容量可达420 F•g-1, 明显高于纯相NiO的容量(175 F•g-1), 并且材料的倍率容量也显著提高.  相似文献   

3.
溶胶-凝胶-微波法制备阴阳离子同时掺杂型LixMn2OyFz   总被引:6,自引:0,他引:6  
以LNO3、L iF和MnNO3为原料,通过控制n(L i)/n(Mn)和掺F量,运用溶胶-凝胶-微波法在750℃下合成阴阳离子复合掺杂型L ixMn2OyFy电极材料。XRD和FTIR实验表明,适量的阴阳离子复合掺杂不改变材料的立方尖晶石结构;掺杂适量的锂可以改善材料的循环性能,而氟不但可以起到保持材料的比容量而且可以显著降低材料在高温条件使用时的容量损失;充放电和循环伏安实验均证明,L i1.06Mn2O4.034F0.10是较理想的电极材料。室温条件下,L i1.06Mn2O4.034F0.10首次放电比容量达到119mAh/g,循环20次后比容量仍保持在115mAh/g,在55℃使用时,材料20次的比容量损失率为5.6%  相似文献   

4.
随着移动通讯设备和电动汽车的发展,对高比能量密度锂离子电池的需求越来越大。目前商业化动力电池主要采用的磷酸铁锂和三元正极材料放电比容量均低于180 mAh/g,难以满足一次充电行驶500公里以上的要求,因此,正极材料的比容量已成为限制锂离子电池能量密度提高的瓶颈。富锂材料具有大的比容量(≥250 mAh/g)和高的放电电压(3.8 V),理论能量密度高达900 Wh/kg,是未来动力电池的理想正极材料,因而研究高比容量富锂正极材料具有非常重要的现实意义。本文回顾了锂离子电池正极材料的发展和目前商业化正极材料比容量低的现状,综述了新一代大比容量富锂正极材料的结构特征和电化学性质,以及放电机制和改性研究的最新进展,并指出现阶段高能量密度锂离子电池用富锂材料遇到的问题,且有针对性地提出了解决思路和方法。  相似文献   

5.
采用高能球磨法通过不同球磨时间制备xLiF-(Ni_(1/6)Co_(1/6)Mn_(4/6))_3O_4新型正极材料,并对材料进行石墨烯复合改性,提高其性能。结合X-射线衍射、扫描电镜、电化学性能测试和X-射线电子能谱对所制备的正极材料性能进行表征。结果表明,球磨24h的产物的放电比容量最高,为157. 3mAh·g~(-1)。此外,正极材料添加石墨烯能改善其电化学性能,当石墨烯复合量为20%,在室温、0. 05C(1C=250mAh·g~(-1))、1. 5~4. 8V下,材料首圈的放电比容量为235mAh·g~(-1),相较于无石墨烯的材料,在1C和5C倍率下,放电比容量分别提高到151和114 m Ah·g~(-1)。文中还分析了正极材料放电容量随截止电压的变化,确定了复合正极材料在高电压下有获得更高放电容量的潜力。  相似文献   

6.
通过调整不同配锂量、不同焙烧温度以及包覆改性对高镍无钴二元材料性能的影响因素进行了研究。对不同原样和其改性后的材料进行了X射线粉末衍射(XRD)分析和首次充放电性能和倍率性能、循环性能等电化学性能测试。其中过锂量(质量分数)为5%,焙烧温度为820℃的材料性能优异,其首次放电比容量为171.6 mAh·g^-1,1C和3C的放电比容量分别为147.8、129.8 mAh·g^-1。对材料进行锰化合物(质量分数1.0%)包覆处理后,材料的残碱量下降明显,加工性能优异,倍率性能得到明显改善,1C和3C的放电比容量分别提升为156.5、141.8 mAh·g^-1。2Ah软包电池常温循环830周容量保持率为80%,高温循环345周容量保持率为80%。  相似文献   

7.
采用固相法合成了钛离子掺杂LiFe0.6Mn0.4PO4/C正极材料.通过X射线衍射(XRD)、扫描电镜(SEM)以及电化学测试,对合成材料的结构、形貌和电化学性能进行了表征.结果表明:钛离子掺杂未影响材料的晶型结构,但显著改善了材料的电化学性能;Li(Fe0.6Mn0.4)0.96Ti0.02PO4/C材料表现出优异的倍率性能,0.1C倍率下其比容量为160.3mAh.g-1;在10C倍率下,比容量为134.7mAh.g-1;特别是在20C高倍率下仍然具有124.4mAh.g-1的放电比容量.电化学交流阻抗谱(EIS)和循环伏安(CV)测试结果说明,通过钛离子掺杂导致材料阻抗和极化的减少是材料倍率性能改善的主要原因.  相似文献   

8.
采用微波法合成锂离子电池正极材料LiFePO4,并通过X射线衍射(XRD)、电子扫描电镜(SEM)和恒电流充放电实验,研究了在一定微波功率下合成出的材料的性能。结果表明,当含碳量在5%时,采用0.1C进行充放电,材料比容量可达126mAh/g,循环50次后,比容量仅下降10%,循环稳定性好。  相似文献   

9.
以柠檬酸钠作为配位剂,采用共沉淀法,在室温下制备了铁基普鲁士蓝材料(FePB)。当使用20 L容积的反应釜,并将前驱体亚铁氰化钠(Na_4[Fe(CN)_6])的浓度提高至0.5 mol·L~(-1)时,制备一次可实现高达500 g的产量。电化学测试显示,所得FePB材料具有较高的容量、优异的倍率性能和良好的循环寿命。在0.1C时,该材料首次放电比容量可达到117 mAh·g~(-1),在10C的大电流密度下,比容量仍可保持在92 mAh·g~(-1)。在1C电流密度下,经过500次循环,比容量仍保持在87 mAh·g~(-1),容量保持率达到89%。以商业硬碳为负极,以FePB为正极,制作了软包钠离子全电池。该软包电池在50 mA的电流下,经过400次循环可实现75%的容量保持率。FePB材料优异的电化学性能与其较高的钠含量、低的缺陷、多边界的微观结构以及普鲁士蓝类材料独特的开放框架结构有关。  相似文献   

10.
设计合成了一系列聚酰亚胺基的共轭骨架材料用于锂电池负极.首先,选用具有不同共轭体系的二酐分子用作共聚物构建单元,随后通过亚胺化反应与三聚氰胺共缩聚.最后,通过进一步热处理提高材料的交联程度和稳定性.将该材料用于锂离子电池负极表现出稳定的电化学性能.聚合物的倍率性能测试结果表明:在150 mA·g~(-1)的电流密度下,循环150次后,放电比容量达到471 mAh·g~(-1)以上,在2 A·g~(-1)的较大电流密度下,放电比容量达122.1 mAh·g~(-1),当电流密度返回至100 mA·g~(-1)时,其放电比容量又上升至532.3 mAh·g~(-1)左右,材料具有较好的倍率性能,聚合物材料在充放电过程中,避免了有机小分子材料在与锂离子结合后,易溶于电解液造成的容量损失.同时,共聚物骨架的共轭结构单元和极性基团,可在保证材料的导电性的同时增加材料结合锂离子的能力,因此表现出了优异的倍率性能.  相似文献   

11.
通过水热法制备的LiFePO4正极材料具有颗粒均匀细小等特点,并进行X射线衍射(XRD),电子扫描电镜(SEM)和恒电流充放电实验,研究了在一定的反应温度下合成出的材料的电化学性能.结果表明,当合成温度为200℃时,含碳量为10%时,采用0.5C进行充放电,材料的比容量达到132mAh/g,循环了50圈,比容量基本上没...  相似文献   

12.
采用共沉淀法和热分解法合成了具有核壳结构的MnO2@MgO微球。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等手段对材料进行表征,结果发现包覆MgO不改变MnO2的结构,包覆层由纳米颗粒组成,厚度约为50 nm。电化学性能结果显示,包覆后材料的放电比容量明显提高,在100 mA·g^-1电流密度下,最大放电比容量为274.3 mAh·g^-1,比未包覆材料提高了12.8%。在1000 mA·g^-1电流密度下经过500次循环后,包覆后材料的放电比容量保持率高达84.1%,表现出优异的循环稳定性。MgO包覆层的存在避免了MnO2与电解液之间直接接触,抑制了电极材料在充放电过程中锰的溶解,从而显著提高MnO2的循环性能。  相似文献   

13.
导电含硫材料/聚苯胺复合物作为镁二次电池的正极材料   总被引:6,自引:0,他引:6  
使用通过简单加热聚丙烯腈(PAN)和硫单质而得到的导电含硫材料(conductive sulfur-containing material, CSM)及其与聚苯胺(PAn)的复合物作为镁二次电池的正极材料. X射线衍射(XRD)和傅立叶红外光谱(FT-IR)测试表明, 导电含硫材料的结构由类似石墨的微晶相及无定形相所组成, 材料骨架为含有S—S键的脱水嘧啶型基质. 该导电含硫材料与聚苯胺复合并掺杂Cu(II)后, 其放电比容量和电化学可逆性大大提高, 放电比容量可达117.3 mAh·g-1, 22次循环后容量保持大约78%(相对于第二次放电容量). 聚苯胺不仅起到电化学催化剂的作用, 同时也是电极活性物质, 并且在分子水平上改善了活性材料的导电性能. 该复合物研究结果为镁二次电池正极材料结构设计的开发提供了新的思路.  相似文献   

14.
1997年Padhi~([1])研究了锂过渡金属磷酸盐系材料的合成和电化学性能,发现这种聚阴离子体橄榄石型LiFePO_4在0.05 mA·cm~(-2)充放电电流密度下,约3.5 V(vs.Li~+/Li)平台电位范围内可以得到100~110 mAh·g~(-1)的比容量,(其理论比容量170 mAh·g~(-1)),己接近当时商品化正极材料LiCoO_2的实际放电比容量,而且充放电曲线非常平坦,这一发现引起国际电化学界不少研究人员的注意~([2,3]).  相似文献   

15.
采用高能球磨法通过不同球磨时间合成 xLiF-(Ni1/6Co1/6Mn4/6)3O4新型正极材料,并对材料进行石墨烯复合改性,提高其性能。结合X-射线衍射(XRD)、扫描电镜(SEM)、电化学性能测试和X-射线电子能谱(XPS)对xLiF-(Ni1/6Co1/6Mn4/6)3O4正极材料性能进行表征。研究表明,球磨24小时产物的放电容量最高,为157.3 mAh g-1。并且LiF与(Ni1/6Co1/6Mn4/6)3O4比例为1.5:1(x=1.5)时放电容量最高。此外正极材料添加石墨烯能改善材料的电化学性能,石墨烯复合量为20%,在室温、0.05 C(1C=250 mAh g-1)、1.5 -4.8 V下,材料首圈的放电比容量为235 mA hg -1,相较于无石墨烯的材料,在1 C和5 C倍率下,放电比容量分别为151和114 mAh g-1。同时分析了正极材料放电容量随截止电压的变化,确定了复合正极材料在高电压下有获得更高放电容量的潜力。  相似文献   

16.
随着锂离子电池向高比能量方向发展,传统的石墨负极材料将逐渐被合金、金属氧化物等高比容量负极材料所取代。高比容量负极材料在循环过程中易产生较大的体积变化,从而导致电极循环性能衰退,限制了其实际应用。除从材料本身入手外,变换粘结剂是改善高比容量负极材料电化学性能的有效途径。本文对近十年来锂离子电池高比容量负极用粘结剂的发展进行了总结。对聚偏氟乙烯(PVDF)粘结剂进行改性处理,提高其黏弹性,可以显著改善电极的电化学性能。与PVDF相比,水性羧甲基纤维素(CMC)粘结剂可以明显提高Si基电极的电化学性能。CMC用作高比容量负极材料粘结剂明显优于PVDF的原因包括其利于电极浆料分散、与电解液不反应以及能够与活性物质之间形成化学键(共价键或氢键)等。同时,CMC本身的结构参数(分子量、取代度、阳离子)、CMC加入量、浆料pH值及电极孔隙率均对CMC电极的性能具有重要影响。聚丙烯酸(PAA)及海藻酸钠粘结剂由于含有更多的羧基(—COOH)基团,对高比容量负极材料具有更好的效果。其他新型粘结剂在高比容量负极性能的提升方面也具有较大潜力。  相似文献   

17.
正富锂层状氧化物正极材料(LLOs)由于其比容量高、工作电压高、成本低等优点受到了研究人员的广泛关注~1。LLOs的高比容量来源于常见的过渡金属氧化还原对和独特的阴离子氧化还原对(O~(2–)/O~–)~2。但LLOs较高的放电比容量会导致层状材料的深度脱锂态,引起晶格氧的过度氧化与释放,最终导致容量和电压的衰减~3。针对上述问题,研究人员发展了多种方案进行针对性改性,取得  相似文献   

18.
采用同轴静电纺丝法制备了碳包覆纳米SnO2中空纤维超级电容器电极材料.利用X射线衍射(XRD)、拉曼光谱、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和比表面积分析仪(BET)对材料进行表征.结果表明,纤维呈现中空形貌,平均直径为1 μm; SnO2颗粒均匀分布于碳壳结构中,平均粒径为3-15 nm.材料的比表面积为565 m2·g-1.在三电极体系中,当电流密度为0.25 A·g-1时,电极材料的比容量达397.5 F·g-1;在1.0A·g-1电流密度下,充放电循环3000次后比容量仍保持为初始值的88%.在对称型双电极体系中,电流密度为0.25 A·g-1时,电极材料的比容量达162.0 F·g-1,在1.0 A·g-1电流密度下,充放电循环3000次后比容量仍保持为初始值的84%.  相似文献   

19.
通过共沉淀法制备锂离子电池富锂锰基正极材料Li1.2Mn0.534Ni0.133Co0.133O2,并对其进行AlF3包覆。实验结果表明,通过AlF3包覆,材料的电化学性能得到明显提高。在0.2C下,包覆前材料的首次放电比容量为253 mAh.g-1,首次充放电效率仅为88.8%。经过AlF3包覆,材料的首次放电比容量提高到294 mAh.g-1,首次充放电效率高达96.4%。同样,在1.0C下循环50次,未包覆材料的放电比容量由225 mAh.g-1降到185 mAh.g-1,容量保持率仅为82.2%。经过AlF3包覆,材料的放电比容量由230mAh.g-1仅降为222 mAh.g-1,容量保持率高达96.5%。  相似文献   

20.
应用低热固相法制备镍锰复合正极材料Li[Li0.167Mn0.583Ni0.25]O2.XRD、FESEM和恒电流充放电测试表明,该材料结晶良好,可标定为α-NaFeO2型结构(空间群R3-m),颗粒粒径约为60~100 nm,粒度均匀细小.在2.5~4.4 V之间以0.5 C(100 mA/g)做充放电循环时,可逆比容量在120 mAh/g以上,循环性能非常稳定.如将截止电压升高到4.6 V,则比容量大大提高,最高可达234 mAh/g.上述充放电测试都出现了比容量随循环次数上升的现象.主要原因可归结为材料中Mn(Ⅳ)向Mn(Ⅲ)的转变,但在不同的电压范围内导致该转变的起因并不相同.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号