首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel type of bioreducible amphiphilic multiarm hyperbranched copolymer (H40-star-PLA-SS-PEG) based on Boltorn® H40 core, poly(l-lactide) (PLA) inner-shell, and poly(ethylene glycol) (PEG) outer-shell with disulfide-linkages between the hydrophobic and hydrophilic moieties was developed as unimolecular micelles for controlled drug release triggered by reduction. The obtained H40-star-PLA-SS-PEG was characterized in detail by nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), gel permeation chromatography (GPC), differential scanning calorimeter (DSC), and thermal gravimetric analysis (TGA). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analyses suggested that H40-star-PLA-SS-PEG formed stable unimolecular micelles in aqueous solution with an average diameter of 19 nm. Interestingly, these micelles aggregated into large particles rapidly in response to 10 mM dithiothreitol (DTT), most likely due to shedding of the hydrophilic PEG outer-shell through reductive cleavage of the disulfide bonds. As a hydrophobic anticancer model drug, doxorubicin (DOX) was encapsulated into these reductive unimolecular micelles. In vitro release studies revealed that under the reduction-stimulus, the detachment of PEG outer-shell in DOX-loaded micelles resulted in a rapid drug release. Flow cytometry and confocal laser scanning microscopy (CLSM) measurements indicated that these DOX-loaded micelles were easily internalized by living cells. Methyl tetrazolium (MTT) assay demonstrated a markedly enhanced drug efficacy of DOX-loaded H40-star-PLA-SS-PEG micelles as compared to free DOX. All of these results show that these bioreducible unimolecular micelles are promising carriers for the triggered intracellular delivery of hydrophobic anticancer drugs.  相似文献   

2.
This work has presented a typical example to reveal the great influence of the terminal groups on the self-assembly of hyperbranched polymers. The hyperbranched polymers with hydroxyl terminal groups (HBPO-OH) were hydrophobic and precipitated in water, however, they displayed a pH-responsive self-assembly behavior when the terminal groups were replaced by carboxyl groups. The obtained carboxyl-terminated hyperbranched polymers (HBPO-COOH) existed as unimolecular micelles at high pH (12.21) due to the ionization of carboxyl groups, while the polymers aggregated into multimolecular micelles from 10 to 500 nm with the decrease of pH as a result of the partial protonation of the carboxyl groups. The size of the obtained micelles depended strongly on the solution pH - the lower the pH, the bigger the micelles. TEM, DLS, ATR-FT-IR, (1)H NMR and AFM measurements substantiated that the multimolecular micelles were formed by the secondary aggregation of unimolecular micelles driven by the hydrogen bonding interaction depending on the solution pH.  相似文献   

3.
Amphiphilic star shape poly(ε‐caprolactone)‐b‐hyperbranched polyglycidol (sPCL‐HPG) were synthesized and used to investigate micell formation and to encapsulate hydrophobic drugs. The synthesis of sPCL‐HPG copolymers was carried out by using sPCL as macroinitiator for the ensuing of hypergrafting reaction with glycidols. 1H‐NMR and FTIR were used to characterize sPCL‐b‐HPG structures. The self‐assembled structure of the sPCL‐HPG was characterized by scanning electronic microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The size and size dispersities of micelles were measured by dynamic light scattering DLS. Critical micelle concentration (CMC) was determined using pyrene as fluorescent probe. Hydrophobic methyl red was encapsulated in sPCL‐HPG micelles to illustrate hydrophobic drug loading. The copolymer micelles were used to enhance paclitaxel solubility. The results showed that hydrophobic drugs could be encapsulated in the sPCL‐HPG micelles. The paclitaxel solubility in the micelles of 5 wt% of sPCL23‐HPG170 got to 168 µg/ml. sPCL‐HPG, which have biodegrability and hydrophobicity at PCL part and smaller size of HPG fragments while maintaining the total repeating units of glycidols, provide an alternative choice of carriers for poorly soluble drugs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A novel amphiphilic thermosensitive star copolymer with a hydrophobic hyperbranched poly (3‐ethyl‐3‐(hydroxymethyl)oxetane) (HBPO) core and many hydrophilic poly(2‐(dimethylamino) ethyl methacrylate) (PDMAEMA) arms was synthesized and used as the precursor for the aqueous solution self‐assembly. All the copolymers directly aggregated into core–shell unimolecular micelles (around 10 nm) and size‐controllable large multimolecular micelles (around 100 nm) in water at room temperature, according to pyrene probe fluorescence spectrometry and 1H NMR, TEM, and DLS measurements. The star copolymers also underwent sharp, thermosensitive phase transitions at a lower critical solution temperature (LCST), which were proved to be originated from the secondary aggregation of the large micelles driven by increasing hydrophobic interaction due to the dehydration of PDMAEMA shells on heating. A quantitative variable temperature NMR analysis method was designed by using potassium hydrogen phthalate as an external standard and displayed great potential to evaluate the LCST transition at the molecular level. The drug loading and temperature‐dependent release properties of HBPO‐star‐PDMAEMA micelles were also investigated by using indomethacin as a model drug. The indomethacin‐loaded micelles displayed a rapid drug release at a temperature around LCST. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 668–681, 2008  相似文献   

5.
以超支化双硫酯为链转移剂,偶氮二异丁腈(AIBN)为引发剂,采用可逆加成-断裂链转移(RAFT)活性自由基聚合方法,合成了以超支化聚酯(Boltorn H20)为核,聚丙烯酸为臂的两亲性超支化多臂共聚物(H20-star-PAA),并通过紫外分光光度计、动态光散射(DLS)和透射电子显微镜(TEM)对它在水溶液中的pH响应的自组装行为进行了研究.结果表明,在稀溶液条件下,H20-star-PAA始终以单分子胶束的形式存在,随着溶液pH的降低,胶束的PAA壳层会逐步塌缩,导致胶束尺寸减小;而在浓溶液条件下,当溶液的pH较低时,单分子胶束会进一步聚集形成多分子胶束.  相似文献   

6.
Summary: Amphiphilic‐hyperbranched polyglycidols and a linear analogue were tested for their ability to act as nanoreactors for the unimolecular elimination (E1) reactions of tert‐alkyl iodides. Their encapsulation properties were also compared. The linear polymer was found to have very good “unimolecular reverse micellar” characteristics as well, even though the results showed the advantages of a hyperbranched nature over a linear one. Our results stress the need for a direct comparison of branched and linear polymers for any application.

Amphiphilic polyglycidol unimolecular reverse micelles.  相似文献   


7.
This work focused on the synthesis and aqueous self‐assembly of a series of novel hyperbranched star copolymers with a hyperbranched poly[3‐ethyl‐3‐(hydroxymethyl)oxetane] (HBPO) core and many linear poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA) arms. The copolymers can synchronously form unimolecular micelles (around 10 nm) and large multimolecular micelles (around 100 nm) in water at room temperature. TEM measurements have provided direct evidence that the large micelles are a kind of multimicelle aggregates (MMAs) with the basic building units of unimolecular micelles. It is the first demonstration of the self‐assembly mechanism for the large multimolecular micelles generated from the solution self‐assembly of hyperbranched copolymers.

  相似文献   


8.
A novel, hyperbranched, amphiphilic multiarm biodegradable polyethylenimine-poly(gamma-benzyl-L-glutamate) (PEI-PBLG) copolymer was prepared by the ring-opening polymerization of gamma-benzyl-L-glutamate-N-carboxyanhydride (BLG-NCA) with hyperbranched PEI as a macroinitiator. The copolymer could self-assemble into core-shell micelles in aqueous solution with highly hydrophobic micelle cores. As the PBLG content was increased, the size of the micelles increased and the critical micelle concentration (CMC) decreased. The surface of the micelles had a positive zeta potential. The cationic micelles were capable of complexing with plasmid DNA (pDNA), which could be released subsequently by treatment with polyanions. The PEI-PBLG copolymer formed unimolecular micelles in chloroform solution. The pH-sensitive phase-transfer behavior exhibited two critical pH points for triggering the encapsulation and release of guest molecules. Both the encapsulation and release processes were rapid and reversible. Under strong acidic or alkaline conditions, the release process became partially or completely irreversible. Thus, this copolymer system should be an attractive candidate for a gene- or drug-delivery system in aqueous media and could provide the phase-transfer carriers between water and organic media.  相似文献   

9.
Amphiphilic hyperbranched polyprodrugs (DOX‐S‐S‐PEG) with drug repeat units in hydrophobic core linked by disulfide bonds were developed as drug self‐delivery systems for cancer therapy. The hydroxyl groups and the amine group in doxorubicin (DOX) were linked by 3,3′‐dithiodipropanoic acid as hydrophobic hyperbranched cores, then amino‐terminated polyethylene glycol monomethyl ether (mPEG‐NH2) as hydrophilic shell was linked to hydrophobic cores to form amphiphilic and glutathione (GSH)‐responsive micelle of hyperbranched polyprodrugs. The amphiphilic micelles can be disrupted under GSH (1 mg mL?1) circumstance. Cell viability of A549 cells and 293T cells was evaluated by CCK‐8 and Muse Annexin V & Dead Cell Kit. The disrupted polyprodrugs maintained drug activity for killing tumor cells. Meanwhile, the undisrupted polyprodrugs possessed low cytotoxicity to normal cells. The cell uptake experiments showed that the micelles of DOX‐S‐S‐PEG were taken up by A549 cells and distributed to cell nuclei. Thus, the drug self‐delivery systems with drug repeat units in hydrophobic cores linked by disulfide bonds showed significant special advantages: 1) facile one‐pot synthesis; 2) completely without toxic or non‐degradable polymers; 3) DOX itself functions as fluorescent labeled molecule and self‐delivery carrier; 4) drug with inactive form in hyperbranched cores and low cytotoxicity to normal cells. These advantages make them excellent drug self‐delivery systems for potential high efficient cancer therapy.  相似文献   

10.
In this contribution, amphiphilic star copolymers (H40‐star‐PCL‐a‐PEG) with an H40 hyperbranched polyester core and poly(ε‐caprolactone)‐a‐poly(ethylene glycol) copolymer arms linked with acetal groups are synthesized using ring‐opening polymerization and a copper (I)‐catalyzed alkyne‐azide cycloaddition click reaction. The acid‐cleavable acetal groups between the hydrophilic and hydrophobic segments of the arms endow the amphiphilic star copolymers with pH responsiveness. In aqueous solution, unimolecular micelles can be formed with good stability and a unique acid degradability, as is desirable for anticancer drug carriers. For the model drug of doxorubicin, the in vitro release behavior, intracellular release, and inhibition of proliferation of HeLa cells show that the acid‐cleavable unimolecular micelles with anticancer activity can be dissociated in an acidic environment and efficiently internalized by HeLa cells. Due to the acid‐cleavable and biodegradable nature, unimolecular micelles from amphiphilic star copolymers are promising for applications in intracellular drug delivery for cancer chemotherapy.

  相似文献   


11.
Since many potential drugs are poorly water soluble, there is a high demand for solubilization agents. Here, we describe the synthesis of dendritic core-shell-type architectures based on hyperbranched polyglycerol for the solubilization of hydrophobic drugs. Amphiphilic macromolecules containing hydrophobic biphenyl groups in the core were synthesized in an efficient three- or four-step procedure by employing Suzuki-coupling reactions. These species were then used to solubilize the commercial drug nimodipine, a calcium antagonist used for the treatment of heart diseases and neurological deficits. Pyrene was also used as a hydrophobic model compound. It turned out that the transport properties of the dendritic polyglycerol derivatives, which are based on hydrophobic host-guest interactions, depend strongly on the degree and type of core functionalization. In the case of the multifunctional nimodipine, additional specific polymer-drug interactions could be tailored by this flexible core design, as detected by UV spectroscopy. The enhancement of solubilization increased 300-fold for nimodipine and 6000-fold for pyrene at a polymer concentration of 10 wt%. The sizes of the polymer-drug complexes were determined by both dynamic light scattering (DLS) experiments and transmission electron microscopy (TEM), and extremely well-defined aggregates with diameters of approximately 10 nm in the presence of a drug were observed. These findings together with a low critical aggregate concentration of 4x10(-6) mol L-1 indicate the controlled self-assembly of the presented amphiphilic dendritic core-shell-type architectures rather than a unimolecular transport behavior.  相似文献   

12.
Ultrasound has been recognized as an exciting tool to enhance the therapeutic efficacy in tumor chemotherapy owing to the triggered drug release, facilitated intracellular drug delivery, and improved spatial precision. Aiming for a precise localized drug delivery, novel dendritic polyurethane-based prodrug (DOX-DPU-PEG) was fabricated with a drug content of 18.9% here by conjugating DOX onto the end groups of the functionalized dendritic polyurethane via acid-labile imine bonds. It could easily form unimolecular micelles around 38 nm. Compared with the non-covalently drug-loaded unimolecular micelles (DOX@Ph-DPU-PEG), they showed excellent pH/ultrasound dual-triggered drug release performance, with drug leakage of only 4% at pH 7.4, but cumulative release of 14% and 88% at pH 5.0 without and with ultrasound, respectively. The ultrasound responsiveness was attributed to the unique strawberry-shaped topological structure of the DOX-DPU-PEG, in which DOX was embedded in the skin layer of the hydrophobic DPU cores. With ultrasound, the DOX-DPU-PEG unimolecular micelles possessed enhanced tumor growth inhibition than free DOX but showed no obvious cytotoxicity on the tumor cells without ultrasound. Such feature makes them promising potential for precise localized drug delivery.  相似文献   

13.
A series of poly(?‐caprolactone/glycolide)‐poly(ethylene glycol) (P(CL/GA)‐PEG) diblock copolymers were prepared by ring opening polymerization of a mixture of ?‐caprolactone and glycolide using mPEG as macro‐initiator and stannous octoate as catalyst. Self‐assembled micelles were prepared from the copolymers using nanoprecipitation method. The micelles were spherical in shape. The micelle size was larger for copolymers with longer PEG blocks. In contrast, the critical micelle concentration of copolymers increased with decreasing the overall hydrophobic block length. Drug loading and drug release studies were performed under in vitro conditions, using paclitaxel as a hydrophobic model drug. Higher drug loading was obtained for micelles with longer poly(ε‐caprolactone) blocks. Faster drug release was obtained for micelles of mPEG2000 initiated copolymers than those of mPEG5000 initiated ones. Higher GA content in the copolymers led to faster drug release. Moreover, drug release rate was enhanced in the presence of lipase from Pseudomonas sp., indicating that drug release is facilitated by copolymer degradation. The biocompatibility of copolymers was evaluated from hemolysis, dynamic clotting time, and plasma recalcification time tests, as well as MTT assay and agar diffusion test. Data showed that copolymer micelles present outstanding hemocompatibility and cytocompatibility, thus suggesting that P(CL/GA)‐PEG micelles are promising for prolonged release of hydrophobic drugs.  相似文献   

14.
Here, we report the first example of transition metal-catalyzed one-pot synthesis of water-soluble dendritic molecular nanocarriers behaving like unimolecular micelles. Using the palladium-alpha-diimine chain walking catalyst, copolymerization of ethylene and comonomer 3 afforded, in one step, amphiphilic copolymer 1 having a hydrophobic core and a hydrophilic shell. A much larger amphiphilic core-shell copolymer 2 was synthesized by a two-step approach: a copolymer having many free hydroxyl groups was first prepared, which was subsequently coupled to poly(ethylene glycol) (PEG) to afford the copolymer 2. Light-scattering, fluorescence, and UV/vis spectroscopic studies with Nile Red in aqueous solution showed unimolecular micellar properties for both copolymers 1 and 2. The dye encapsulation capacity for the core-shell copolymers is nearly proportional to the molecular weight of the hydrophobic core. The unimolecular micellar properties coupled with the good water solubility and biocompatibility of the PEG moieties make these molecular nanocarriers promising candidates for many applications including drug delivery and controlled drug release.  相似文献   

15.
Amphiphilic polylactides (PLAs) with well‐defined architectures were synthesized by ring‐opening polymerization of AB monomers (glycolides) substituted with both a long chain alkyl group and a triethylene glycol segment terminated in either a methyl or benzyl group. The resulting amphiphilic PLAs had number average molecular weights >100,000 g/mol. DSC analysis revealed a first‐order phase transition at ~ 20 °C, reflecting the crystalline nature of the linear alkyl side chains. Polymeric micelles were prepared by the solvent displacement method in water. Dynamic light scattering measurements support formation of a mixture of 20‐nm‐diameter unimolecular micelles and 60‐nm particles comprised of an estimated 25 polymer molecules. UV–vis characterization of micelles formed from acetone–water solutions containing azobenzene confirmed encapsulation of the hydrophobic dye, suggesting their potential as new amphiphilic PLAs as drug delivery vehicles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5227–5236, 2007  相似文献   

16.
17.
18.
The novel hyperbranched poly(methyl acrylate)‐block‐poly(acrylic acid)s (HBPMA‐b‐PAAs) are successfully synthesized via single‐electron transfer‐living radical polymerization (SET‐LRP), followed with hydrolysis reaction. The copolymer solution could spontaneously form unimolecular micelles composed of the hydrophobic core (PMA) and the hydrophilic shell (PAA) in water. Results show that the size of spherical particles increases from 8.18 to 19.18 nm with increased pH from 3.0 to 12.0. Most interestingly, the unique regular quadrangular prisms with the large microstructure (5.70 μm in length, and 0.47 μm in width) are observed by the self‐assembly of unimolecular micelles when pH value is below 2. Such self‐assembly behavior of HBPMA‐b‐PAA in solution is significantly influenced by the pH cycle times and concentration, which show that increased polymer concentration favors aggregate growth.

  相似文献   


19.
Polymeric micelles showing charge selective and pH‐reversible encapsulation are reported. It is found that for a guest mixture of organic cationic–anionic dyes, a unimolecular micelle (PEI@PS) with a polystyrene (PS) as shell and a hyperbranched polyethylenimine (PEI) as core can exclusively entrap the anionic one; and a physical micelle consisting of brush‐like macromolecule (mPS‐PAA) with multi PS‐b‐polyacrylic acid (PAA) as grafts can exclusively entrap the cationic one. A covalent micelle (PEI‐COOH@PS) bearing a zwitterionic core, that is, PEI covalently derived with dense carboxylic acids, can undergo highly pH‐switchable charge selective and pH‐reversible encapsulation. Both PEI@PS and mPS‐PAA can be used for highly charge‐selective separation of ionic dyes but the pH‐reversibility of the encapsulation is relatively limited. In contrast, PEI‐COOH@PS is less effective to differentiate the anionic–cationic dyes but is well recyclable. A physical micelle obtained from the self‐assembly of PEI and mPS‐PAA shows similar property to PEI‐COOH@PS. The combination of these micelles in mixture separation can enhance the recyclability of the micelle and widen the spectrum of mixtures that can be well separated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Simply constructing multiple responsive polymers with obvious shape and dimension variations on their assemblies upon different stimuli is still rarely reported. In this study, we report a hyperbranched polymer named HPAzoBAHB-star-PEG9 with quadruple-response to light,temperature, pH and oxidation stimuli. The polymer contains azobenzene chromophore, sulfide, amide and amine groups in its hydrophobic hyperbranched core, and the core is capped with hydrophilic polyethylene glycol(PEG9) arms. HPAzoBAHB-star-PEG9 could assemble into unusual leaf-like lamellar micelles at 25 °C under the guidance of orderly arranged H-aggregate of azobenzene moieties. These leaf-like lamellar micelles can transform into vesicles upon UV irradiation and lower temperature, or convert to smaller spherical micelles in acidic or oxidative environments, respectively, with the destroy of ordered azobenzene arrangements. This quadruple-responsive hyperbranched polymer is suitable to construct multiple stimuli-responsive micro/nanostructures, or accurate delivery and release following subtle stimuli sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号