首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A new pentaporphyrin array, constituted by a peptidic backbone and lateral chains with two free-base, one Mg(II), and two Zn(II) porphyrins, has been synthesized. The electrochemical and photophysical properties are not the mere superposition of those of its model compounds: slight shifts of the E(1/2) values and strong perturbation of both the Soret and Q-band absorption show substantial ground-state interactions among the component units, which take advantage of the rather flexible nature of the peptidic links. This multiporphyrin array, despite the flexible and nonconjugated nature of the peptidic spacers, plays the role of an antenna for visible light: an efficient photoinduced energy transfer takes place from the metalated porphyrin units to the free-base ones. Furthermore, the light emitted by the antenna can be: 1) tuned upon protonation of the free-base units, or 2) turned off by a redox input, since the formation of the Mg porphyrin radical cation, by either electrochemical or chemical methods, quenches the free-base porphyrin emission. Both quenching and tuning of the emission from the light-collecting center can be fully reverted by redox or chemical stimuli.  相似文献   

2.
The electronic structures, absorption spectra and intramolecular charge transfer properties of five push-pull zinc porphyrin analogs with different donor group and π bridge have been investigated by density functio- nal theory(DFT) and TD(time-dependent)-DFT approach. The results show that the asymmetrical substituted diphenylamine group is favorable to the Q-band absorption of porphyrin dyes. The absence of the acetylenic bond in the π bridge part leads to the result that the B-band and the Q-band are blue-shifted and their absorption strength become weaker compared with that containing acetylenic bond, respectively. The introduction of the benzothiadiazole into the π bridge improves the intramolecular charge transfer.  相似文献   

3.
Electronic excited states, electronic absorption, and magnetic circular dichroism (MCD) spectra of free-base tetraazaporphyrin (TAP), phthalocyanine (Pc), naphthalocyanine (Nc), and anthracocyanine (Ac) were studied by quantum chemical calculations using the symmetry-adapted cluster-configuration interaction (SAC-CI) method. Not only optically allowed states including the Q- and B-bands but also optically forbidden states were calculated for transitions whose excitation energies were lower than 4.5 eV. The present SAC-CI calculations consistently assigned the absorption and MCD peaks as optically allowed π→π(?) excitations, although these calculations using double-zeta basis limit quantitative agreement and discussion. For Nc and Ac, excited states beyond the four-orbital model appeared in the low-energy region. The low-energy shifts of the Q-bands with the extension of molecular size were explained by the orbital energies. The splitting of the Q-bands decreases with extension of the molecular size. This feature was reproduced by the SAC-CI calculations but the configuration interaction with single excitations and time-dependent density functional theory calculations failed to reproduce this trend. Electron correlation in the excited states is important in reproducing this splitting of the Q-bands and in describing the energy difference between the B(2u) and B(3u) states of free-base porphyrins.  相似文献   

4.
A theoretical study is presented on the magnetic circular dichroism (MCD) exhibited by the porphyrin complexes MP (M = Mg,Ni,Zn), MTPP (M = Mg,Ni,Zn), and NiOEP, where P = porphyrin, TPP = tetraphenylporphyrin, and OEP = octaethylporphyrin. The study makes use of a newly implemented method for the calculation of A and B terms from the theory of MCD and is based on time-dependent density functional theory (TD-DFT). It is shown that the MCD spectrum is dominated by a single positive A term in the Q-band region in agreement with experiment where available. The band can be fully explained as the first transition in Gouterman's four-orbital model for the type of porphyrins studied here. For the Soret band, the experimental MCD spectrum appears as a single positive A term. This is also what is found computationally for NiP and NiTPP, where the second transition in Gouterman's four-orbital model give rise to a positive A term. However, for the remaining systems, the simulated MCD spectrum is actually due to two B terms that have the appearance of one positive pseudo A term. The two B terms appear because the second Gouterman state is coupled strongly to a second excited state (b(2u) --> 2e(g)) of nearly the same energy by the external magnetic field.  相似文献   

5.
A series of rigid polyphenylene, free-base porphyrin-containing dendrimers terminated with either dimethoxybenzene or benzoquinone end-groups were prepared by a combined divergent and convergent synthesis. Unlike previous routes for preparing polyphenylene dendrimers that are incompatible with end-groups bearing certain functional moieties, the synthetic methodology chosen for this work enables incorporation of functional groups on the dendrimer end-groups during preparation of the dendrimer wedges and during synthesis of the final dendrimer. The basic strategy utilized a convergent preparation of dendrimer wedges using Suzuki coupling conditions, which were then either attached to a porphyrin core in a divergent coupling step or cyclized to form the porphyrin dendrimer in a convergent step. The latter approach was found to be more general and resulted in higher yields and more readily separated products. Steady-state absorption measurements for these dendrimers showed Soret and Q-band absorptions typical of free-base porphyrins. Preliminary steady-state fluorescence measurements of these dendrimers indicate quenching of the S1 state of the free-base porphyrin in all benzoquinone-containing dendrimers that is attributed to efficient electron-transfer from the excited porphyrin to the benzoquinone end-groups. The amount of fluorescence quenching was in good agreement with the number of benzoquinone groups at the dendrimer periphery and the distance between the porphyrin and benzoquinone groups as calculated by semiempirical (AM1) molecular orbital calculations.  相似文献   

6.
A series of tetraphenylporphyrins appended at the β-pyrrolic position with an ethynylphenylene- or ethynylpyridine-substituent have been subjected to spectroscopic and density functional theory (DFT) analyses. The mean absolute deviation between corresponding experimental and DFT-derived vibrational spectra is up to 10.2 cm(-1), suggesting that the DFT B3LYP/6-31G(d) method provides an accurate model of the β-substituted porphyrin systems. The configuration interactions that give rise to prominent electronic absorptions have been calculated using time-dependant DFT (TD-DFT) and have been rationalized with reference to the energy and topology of DFT calculated molecular orbitals. As the electron withdrawing capacity of the β-substituent increases the LUMO orbital gains appreciable amplitude over the substituent moiety and is stabilised. This represents a departure from the assumptions underpinning the Gouterman four-orbital model, resulting in atypical electronic absorption spectra. This phenomenon is also manifested in the enhancement patterns of the resonance Raman spectra insofar as B-band excitation engenders an enhancement of substituent based modes. These observations demonstrate that the β-substituent exerts an appreciable electronic influence on the porphyrin π-electron system and provides a means of introducing charge-transfer character to prominent electronic transitions.  相似文献   

7.
Porphyrin (P), porphycene (Pc), corrphycene (Cn), and hemiporphycene (Hpc) represent a series of well defined "4-N in" constitutional porphyrin isomers. These isomers, in the form of their octaethyl derivatives, represent a congruent set of porphyrinoids whose properties can be compared. In this study we report how variations in electronic structure and nitrogen-core size in the free-base forms of these four systems are reflected in the properties of their corresponding metal complexes. Specifically, the effects that these differences have on the axial ligation properties of the Zn(II), Mg(II), Ni(II), and Co(II) complexes of P, Pc, Cn, and Hpc in toluene using pyridine as the axial ligand are detailed. Also reported are the relative stabilities of these complexes under acidic conditions. It is shown that for the zinc, magnesium, and cobalt complexes, there are distinct differences in the ability to maintain four-, five-, or six-coordinate geometries in the presence of similar concentrations of pyridine. By contrast, no apparent differences in axial ligand binding affinity are seen for the four nickel complexes. Little difference in stability was likewise seen when these same complexes were subject to acid-mediated demetallation, with all four falling into stability class II, according to the accepted porphyrin stability ranking system. High stabilities were also seen in the case of the cobalt complexes, with the Pc and Cn complexes being of stability class III and the P and Hpc derivatives falling into stability class II. The Zn(II) and Mg(II) complexes were all far less stable than the corresponding Ni(II) and Co(II) complexes. In this case, semiquantitative analyses of the rate of acid-induced decomposition revealed the following stability sequence P>Cn>Hpc>Pc for both the Zn(II) and Mg(II) complexes. Single-crystal X-ray diffraction structures were solved for the Zn(II), Mg(II), and Ni(II) complexes of the octaethyl derivatives of Hpc, Cn, and Pc as well as a Co(II) octamethylcorrphycene and are reported as part of this study. These solid-state structures confirm four-coordinate species for the Ni(II) complexes, four- and five-coordinate species for the Mg(II) and Zn(II) complexes, and a six-coordinate species for the lone Co(II) complex.  相似文献   

8.
Density functional theory (DFT) and time-dependent DFT calculations have been employed to model Zn meso-tetraphenylporphyrin (ZnTPP) complexes having different beta-substituents, in order to design an efficient sensitizer for dye-sensitized solar cells. To calculate the excited states of the porphyrin analogues, at least the TD-B3LYP/6-31G* level of theory is needed to replicate the experimental absorption spectra. Solvation results were found to be invariant with respect to the type of model used (PCM vs. C-PCM). Most of the electronic transitions based on Gouterman's four-orbital model of ZnTPP-A and ZnTPP-B are pi --> pi* transitions, so that cell efficiency can be enhanced by increasing the pi-conjugation and electron-withdrawing capability of the beta-substituent. This proposition was tested by inserting thiophene into the beta-substituent of ZnTPP-A to form a new analogue, ZnTPP-C. Compared with ZnTPP-A and ZnTPP-B, ZnTPP-C has a smaller band gap, which brings LUMO closer to the conduction band of TiO(2), and a red-shifted absorption spectrum with higher extinction coefficients, especially in the Q-band position.  相似文献   

9.
酞菁基态和激发态的计算   总被引:7,自引:1,他引:7  
采用DFT方法在B3LYP/6-31G水平上得到了H2Pc(酞菁)的优化结构,并在此基础上采用TDDFT方法计算了激发态.通过与H2P(卟吩)、H2Pz(四氮卟吩)和H2TBP(四苯并卟啉)的比较,研究了苯并取代以及氮杂取代对H2Pc的分子轨道和激发态的影响,上述取代效应使得H2Pc的HOMO-1(132 b1u)和HOMO-3(130 b1u)轨道发生了翻转,氮杂取代的影响尤其明显.这两种取代都使得Q带振子强度增大,在这四种化合物中,H2Pc的振子强度最大.TDDFT计算结果与实验值符合得较好.  相似文献   

10.
A new series of meso-substituted diaryl free-base and metalloporphyrins have been prepared. Each arene has been substituted with both a methyl group in the ortho position and a formyl group in the meta position. Rotation of the arene units is prevented at room temperature due to the steric restrictions imposed by the flanking methyl groups at the porphyrin beta-pyrrolic positions on the methyl groups at the ortho position on the meso-substituted arene unit. This allowed the alpha alpha and alpha beta atropisomers of this porphyrin to be separated and characterised. X-Ray crystallographic determination of the structure of the free-base porphyrin revealed a very flat porphyrin core. Metallation resulted in the isolation and characterisation of the nickel, zinc and copper derivatives. The assignments of the alpha alpha and alpha beta isomers are confirmed by X-ray crystallographic determination of the structures of the Cu(II) analogues. The copper alpha alpha structure exhibits a very twisted porphyrin core, the copper alpha beta structure is also distorted, but to a lesser degree. The activation energy for rotation has been calculated for each of the 2H, Ni and Zn derivatives. The energy required to rotate the arene ring increases in the order Ni < Zn approximately 2H. No significant difference in the free energy of rotation was observed between experiments carried out with the alpha alpha and small alpha beta isomers.  相似文献   

11.
Three oligonaphthalenes with zinc porphyrin and free-base porphyrin moieties were synthesized, in which cascade energy transfer (from naphthalene to free-base porphyrin via zinc porphyrin) was observed when the zinc and free-base porphyrins were close to each other.  相似文献   

12.
Protonated meso-substituted free-base macrocycles of the form [(Cor)H4]+, [(Cor)H5]2+, and [(Cor)H6]3+ where Cor is the trianion of a given corrole, were chemically generated from neutral (Cor)H3 in benzonitrile by addition of trifluoroacetic acid (TFA) and characterized as to their relative acidity, electrochemistry, and spectroelectrochemistry. Three types of protonated free-base corroles with different electron-donating or electron-withdrawing substituents at the meso positions of the macrocycle were investigated. One is protonated exclusively at the central nitrogens of the corrole forming [(Cor)H4]+ from (Cor)H3, while the second and third types of corroles undergo protonation at one or two meso pyridyl substituents prior to protonation of the central nitrogens and give as the final products [(Cor)H5]2+ and [(Cor)H6]3+, respectively. Altogether the relative deprotonation constants (pKa) for 10 different corroles were determined in benzonitrile and analyzed with respect to the molecular structure and/or type of substituents on the three meso positions of the macrocycle. Mechanisms for oxidation and reduction of the protonated corroles are proposed in light of the electrochemical and spectroelectrochemical data.  相似文献   

13.
Electron-donating corroles (Cor) were integrated with electron-accepting phthalocyanines (Pc) to afford two different non-covalent Cor ⋅ Pc systems. At the forefront was the coordination between a 10-meso-pyridine Cor and a ZnPc. The complexation was corroborated in a combination of NMR, absorption, and fluorescence assays, and revealed association with binding constants as high as 106 m −1. Steady-state and time-resolved spectroscopies evidenced that regardless of exciting Cor or Pc, the charge-separated state evolved efficiently in both cases, followed by a slow charge-recombination to reinstate the ground state. The introduction of non-covalent linkages between Cor and Pc induces sizeable differences in the context of light harvesting and transfer of charges when compared with covalently linked Cor-Pc conjugates.  相似文献   

14.
The photophysical characterization of the two tautomers (1e and 1i) of 5,10,15,20-tetraphenyl N-confused free-base porphyrin, as well as the tautomer-locked 2-methyl 5,10,15,20-tetraphenyl N-confused free-base porphyrin, was carried out using a combination of steady state and time-resolved optical techniques. N-Confused porphyrins, alternatively called 2-aza-21-carba-porphyrins or inverted porphyrins, are of great interest for their potential as building blocks in assemblies designed for artificial photosynthesis, and understanding their excited-state properties is paramount to future studies in multicomponent arrays. Femtosecond resolved transient absorption experiments reveal spectra that are similar to those of tetraphenylporphyrin (H2TPP) with either Soret or Q-band excitation, with an extinction coefficient for the major absorbing band of 1e that was about a factor of 5 larger than that of H2TPP. The lifetime of the S1 state was determined at a variety of absorption wavelengths for each compound and was found to be consistent with time-resolved fluorescence experiments. These experiments reveal that the externally protonated tautomer (1e) is longer lived (tau = 1.84 ns) than the internally protonated form (1i, tau = 1.47 ns) by approximately 369 ps and that the N-methyl N-confused porphyrin was shorter lived than the tautomeric forms by approximately 317 ps (DMAc) and approximately 396 ps (benzene). Steady-state fluorescence experiments on tautomers 1e and 1i and the N-methyl analogues corroborate these results, with fluorescence quantum yields (Phi(Fl)) of 0.046 (1e, DMAc) and 0.023 (1i, benzene), and 0.025 (DMAc) and 0.018 (benzene) for the N-methyl N-confused porphyrin. The lifetime and quantum yield data was interpreted in terms of structural changes that influence the rate of internal conversion. The absorption and transient absorption spectra of these porphyrins were also examined in the context of DFT calculations at the B3LYP/6-31G(d)//B3LYP/3-21G(d) level of theory and compared to the spectra/electronic structure of H2TPP and tetraphenyl chlorin.  相似文献   

15.
We have recently discussed how organic nanocrystal dissolution appears in different morphologies and the role of the solution pH in the crystal detriment process. We also highlighted the role of the local molecular chemistry in porphyrin nanocrystals having comparable structures: in water-based acid solutions, protonation of free-base porphyrin molecules is the driving force for crystal dissolution, whereas metal (ZnII) porphyrin nanocrystals remain unperturbed. However, all porphyrin types, having an electron rich π-structure, can be electrochemically oxidized. In this scenario, a key question is: does electrochemistry represent a viable strategy to drive the dissolution of both free-base and metal porphyrin nanocrystals? In this work, by exploiting electrochemical atomic force microscopy (EC-AFM), we monitor in situ and in real time the dissolution of both free-base and metal porphyrin nanocrystals, as soon as molecules reach the oxidation potential, showing different regimes according to the applied EC potential.  相似文献   

16.
A new and efficient synthesis of meso-linked porphyrin-quinone dyads and quinone-porphyrin-quinone triads has been developed via the intermediacy of porphyrins bearing 3-cyclobutenyl-1,2-dione and 3-(1-ethenyl)cyclobutenyl-1,2-dione substituents at one or two nonadjacent meso-positions. The free-base porphyrins 5-bromo-10,20-diphenylporphyrin and 5,15-dibromo-10,20-diphenylporphyrin undergo facile palladium-catalyzed Stille coupling with 3-isopropoxy-2-tri-n-butylstannyl-cyclobutene-1,2-dione to produce the corresponding mono- and bis(3-cyclobutenyl-1,2-dione)-substituted porphyrins in good yields. In contrast, the zinc bromoporphyrins reacted with the same tin reagent only slowly and with the formation of side products. The free-base bromoporphyrins also were coupled with tri-n-butylvinyltin to afford vinylporphyrins in very good yields. 5,15-Diphenyl-10-vinylporphyrin was converted into trans-bromovinylporphyrin, which underwent facile Stille coupling with 3-isopropoxy-2-tri-n-butylstannylcyclobutene-1,2-dione to afford the vinylogous 3-cyclobutenyl-1,2-dione-substituted porphyrin. The molecular structure of 5,15-bis(3-cyclobutenyl-1,2-dione)-10,20-diphenylporphyrin(Z n) was determined by X-ray crystallography. Although the data revealed a fairly large dihedral angle between the cyclobutenedione and the porphyrin rings (57 degrees), the UV-vis spectra of both the mono- and bis(3-cyclobutenyl-1,2-dione)-substituted porphyrins showed B- and Q-band red shifts indicative of strong electronic coupling between the porphyrin and cyclobutenedione chromophores in solution. Introduction of a double bond between the cyclobutenedione and porphyrin rings resulted in a significant red shift of both the B- and Q-bands compared to those of the nonvinylogous system. All porphyrinic cyclobutenediones were metalated with zinc and then, using established cyclobutenedione chemistry, converted into a variety of porphyrin-quinones in excellent yields with aryllithium and vinylic Grignard reagents. From the mono(3-cyclobutenyl-1,2-dione)-substituted porphyrin, 7, a variety of directly linked monoquinone-porphyrin dyads were easily synthesized. Substituents could also be introduced at the free meso-position of 7 by bromination followed by palladium-catalyzed cross-coupling reactions, and additional porphyrinic monoquinones were then prepared from these starting materials. The vinylogous squarylporphyrin was converted into a double bond linked porphyrin-quinone via reaction with phenyllithium followed by thermal rearrangement and oxidation. As a result of the hindered rotation around the C-C bond between the porphyrin and the quinone, pairs of stable, separable, and thermally interconvertable atropisomers of porphyrin-quinones were obtained from 5,15-bis(3-cyclobutenyl-1,2-dione)-10,20-diphenylporphyrin(Z n). The structure of one of the atropisomers was determined by X-ray crystallography.  相似文献   

17.
We have developed a general method to construct optically active porphyrin supramolecular assemblies by using a simple air-water interfacial assembly process. The method involved the in situ diprotonation of the free-base porphyrins at the air-water interface and subsequent assembly under compression. We showed that two intrinsically achiral water-insoluble free-base porphyrin derivatives, 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine (H(2)OEP) and 5,10,15,20-tetra-p-tolyl-21H,23H-porphine (H(2)TPPMe), could be diprotonated when spread onto a 2.4 M hydrochloric acid solution surface, and the Langmuir-Schaefer (LS) films fabricated from the subphase exhibited strong circular dichroism (CD) absorption, whereas those fabricated from pure Milli-Q water subphase did not. The experimental data suggested that the helical stacking of the achiral porphyrin building blocks was responsible for the supramolecular chirality of the assemblies. Interestingly, such a method was successfully applied to a series of other intrinsically achiral free-base porphyrins such as 5,10,15,20-tetrakis(4-methoxyphenyl)-21H,23H-porphine (H(2)TPPOMe), 5,10,15,20-tetraphenyl-21H,23H-porphine (H(2)TPP), 5,10,15,20-tetrakis(4-(allyloxy)phenyl)-21H,23H-porphine (H(2)TPPOA), and 5,10,15,20-tetrakis(3,5-dimethoxyphenyl)-21H,23H-porphine (H(2)TPPDOMe). A possible mechanism has been proposed. The method provides a facile way to obtain optically active porphyrin supramolecular assemblies by using intrinsically achiral water-insoluble free-base porphyrin derivatives.  相似文献   

18.
Ab initio SCF calculations using the molecular fragment method are reported for four molecules related to chlorophyll a, i.e., free-base porphine, magnesium porphine, magnesium chlorin, and ethyl chlorophyllide a. Molecular orbital structure, the “four-orbital model”, reactivity sites, and Mg···N interactions are discussed.  相似文献   

19.
A new series of molecular dyads and pentad featuring free-base porphyrin and ruthenium phthalocyanine have been synthesized and characterized. The synthetic strategy involved reacting free-base porphyrin functionalized with one or four entities of phenylimidazole at the meso position of the porphyrin ring with ruthenium carbonyl phthalocyanine followed by chromatographic separation and purification of the products. Excitation transfer in these donor-acceptor polyads (dyad and pentad) is investigated in nonpolar toluene and polar benzonitrile solvents using both steady-state and time-resolved emission techniques. Electrochemical and computational studies suggested that the photoinduced electron transfer is a thermodynamically unfavorable process in nonpolar media but may take place in a polar environment. Selective excitation of the donor, free-base porphyrin entity, resulted in efficient excitation transfer to the acceptor, ruthenium phthalocyanine, and the position of imidazole linkage on the free-base porphyrin could be used to tune the rates of excitation transfer. The singlet excited Ru phthalocyanine thus formed instantly relaxed to the triplet state via intersystem crossing prior to returning to the ground state. Kinetics of energy transfer (k(ENT)) was monitored by performing transient absorption and emission measurements using pump-probe and up-conversion techniques in toluene, respectively, and modeled using a F?rster-type energy transfer mechanism. Such studies revealed the experimental k(ENT) values on the order of 10(10)-10(11) s(-1), which readily agreed with the theoretically estimated values. Interestingly, in polar benzonitrile solvent, additional charge transfer interactions in the case of dyads but not in the case of pentad, presumably due to the geometry/orientation consideration, were observed.  相似文献   

20.
Chiral aggregation of oligo(p-phenylene vinylene)-functionalized Zn and free-base porphyrins is observed in water. The formation of mixed assemblies containing both porphyrins results in sequential energy transfer from OPV via zinc porphyrin to free-base porphyrin. Furthermore, the incorporation of C60 as electron acceptor yields a charge separated state by ultimate electron transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号