首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
以GdPO4为基质,Sm3+为激活剂,采用水热法合成了纳米荧光粉前驱体,分别在800、900、1 000、1 100和1 200℃下焙烧,得到一系列GdPO4∶Sm3+荧光粉。首先探究了GdPO4∶Sm3+的最佳焙烧温度;其次研究了Sm3+掺杂浓度对GdPO4∶Sm3+荧光性能的影响;最后研究了GdPO4∶2% Sm3+的高温荧光性能和磁性能。使用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、磁强计和荧光分光光度计(FL)对荧光粉的晶体结构、形貌、发光和磁性能进行了表征。结果表明:荧光粉的晶体结构由前驱体六方晶系GdPO4·H2O∶Sm3+变为单斜晶系的GdPO4∶Sm3+,形貌由纳米棒变为无规则块体。当焙烧温度为1 000℃,Sm3+掺杂浓度为2%时,荧光粉的发光强度和荧光寿命达到最大值。GdPO4∶2% Sm3+中Sm3+之间能量传递类型为电偶极-电偶极相互作用,能量传递的临界距离为1.646~1.884 nm。最佳样品GdPO4∶2% Sm3+有优异的热稳定性,热猝灭活化能为-0.157 eV,且具有良好的顺磁性,质量磁化率值为1.22×10-4 emu·g-1·Oe-1。  相似文献   

2.
以GdPO4为基质,Sm3+为激活剂,采用水热法合成了纳米荧光粉前驱体,分别在800、900、1 000、1 100和1 200℃下焙烧,得到一系列GdPO4:Sm3+荧光粉。首先探究了GdPO4:Sm3+的最佳焙烧温度;其次研究了Sm3+掺杂浓度对GdPO4:Sm3+荧光性能的影响;最后研究了GdPO4:2% Sm3+的高温荧光性能和磁性能。使用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、磁强计和荧光分光光度计(FL)对荧光粉的晶体结构、形貌、发光和磁性能进行了表征。结果表明:荧光粉的晶体结构由前驱体六方晶系GdPO4·H2O:Sm3+变为单斜晶系的GdPO4:Sm3+,形貌由纳米棒变为无规则块体。当焙烧温度为1 000℃,Sm3+掺杂浓度为2%时,荧光粉的发光强度和荧光寿命达到最大值。GdPO4:2% Sm3+中Sm3+之间能量传递类型为电偶极-电偶极相互作用,能量传递的临界距离为1.646~1.884 nm。最佳样品GdPO4:2% Sm3+有优异的热稳定性,热猝灭活化能为-0.157 eV,且具有良好的顺磁性,质量磁化率为1.22×10-4 emu·g-1·Oe-1。  相似文献   

3.
采用高温固相法制备了Ce、Sm共掺Lu3Al5O12荧光粉。通过X射线衍射分析、荧光光谱分析研究了样品的结构、发光特性,并通过理论计算研究了能量传递效率、能量传递的临界距离以及能量传递方式。X射线衍射分析表明所制备的荧光粉具有单一的石榴石结构;荧光光谱分析表明,在464 nm蓝光激发下,Sm3+的引入可增加Lu3Al5O12:Ce,Sm发射光谱中红光成分,并且随着Sm3+浓度的增加,Ce3+发光强度逐渐减弱。计算出Ce3+、Sm3+之间的能量传递效率高达77.42%,确定了Ce3+、Sm3+之间的能量传递机制为偶极-偶极相互作用。  相似文献   

4.
采用共沉淀法及1 200 ℃后续煅烧4 h,成功制备了CaSb2O6:Bi3+,Eu3+荧光粉,并对其结构及发光性能进行了研究。所制备荧光粉颗粒为六边形类圆饼状,平均尺寸在100~600 nm之间。对CaSb2O6:Bi3+,Eu3+发光的机理分析表明,Bi3+对Eu3+的发光存在高效的敏化与能量传递。当Bi3+和Eu3+的掺杂浓度分别为0.5%和8%,Eu3+位于580 nm(5D07F0 )处的荧光发射显著增强,Bi3+,Eu3+共掺样品的荧光强度是CaSb2O6:Eu3+的10倍左右。调节Bi3+/Eu3+离子掺杂比,色坐标呈现了从蓝、白光到红光的变化,表明该荧光粉可分别作为蓝或红色荧光粉使用,甚至可实现从蓝、白光到红光的自由调控,这为白光LED荧光粉的发展提供了参考。  相似文献   

5.
为了改善稀土磷酸盐的疏水性和荧光性能,利用水热和微波的方法构筑了双层荧光纳米材料YPO4∶Sm3+@YPO4@PEG (PEG为聚乙二醇)。首先通过调控YPO4∶Sm3+与YPO4的物质的量之比制备不同壳厚的核壳结构纳米发光材料YPO4∶Sm3+@YPO4,优选能够增强主体荧光性能的最佳物质的量之比。然后选用PEG进行包覆,得到YPO4∶Sm3+@YPO4@PEG。利用X射线衍射、扫描电子显微镜、透射电子显微镜、傅里叶变换红外光谱和荧光光谱对产物的结构、形貌和荧光性能进行了表征。结果表明:包覆前后的纳米荧光粉都具有单一的四方晶系(YPO4)结构,呈纳米球型,半径60~100 nm,包覆层的厚度10~20 nm。双层核壳结构的YPO4∶Sm3+@YPO4@PEG的荧光强度比纳米荧光粉YPO4∶Sm3+增强了6倍多。可见该双层荧光纳米材料不仅具有亲水性和生物相容性,也增强了YPO4∶Sm3+的荧光强度。  相似文献   

6.
以Sm3+为激活剂,Na+为电荷补偿剂,柠檬酸为配位剂,乙二醇作为辅助配位剂,采用溶胶-凝胶法合成前驱体,然后在800℃下焙烧,成功制备了一系列SrMoO4:Sm3+,Na+红色荧光粉。用X射线衍射仪、扫描电镜、荧光光谱和傅里叶变换红外光谱等手段对样品的物相、形貌、组成、发光性能和量子效率等进行测试和表征。分析结果表明:制备的SrMoO4:Sm3+,Na+荧光粉均为四方晶系结构,掺杂离子的加入对基质晶体结构影响不大。在403 nm近紫外光激发下,产物有4个发射峰,分别位于563、600、647和707 nm处,归属于5G5/26HJJ=5/2,7/2,9/2,11/2)的电子跃迁,其中位于647 nm处的主发射峰的相对发光强度最大。当Sm3+的掺杂物质的量分数为1%~3%时,发光强度最好,当浓度超过1%~3%时,会发生荧光猝灭。对实验数据进行分析,确定荧光猝灭机理是由于钐离子间交换作用引起的,并计算了能量传递的临界距离为1.77~2.56 nm。此外,还详细研究了乙二醇对SrMoO4:Sm3+,Na+荧光粉形貌的影响,研究结果表明:乙二醇加入量为5 mL时,产物形貌均匀,呈球形或椭球形;且分散性较好;荧光强度最大。  相似文献   

7.
以Sm3+作为激活剂,Bi3+作为辅助激活剂,采用水热法合成Ca1-x-ySmxBiySiO3前驱体,然后在1 100 ℃焙烧得到系列橙红色荧光粉.用X-射线衍射仪、扫描电镜和荧光分光光度计和傅里叶变换红外光谱等手段对样品的组成、结构和形貌及其发光性质进行分析和表征.分析结果表明:产物都为三斜晶系结构的Ca1-x-ySmxBiySiO3和四方结构的方石英SiO2共熔体.在405 nm近紫外光激发下,产物的发射光谱由3个峰组成,发射峰值位于566、606和650 nm处,分别归属于Sm3+4G5/26HJ/2(J=5,7,9)跃迁.产物的激发光谱在405 nm有很强的发射带,与近紫外LED芯片匹配.随着Sm3+掺量的增加,样品发光强度先增强后减弱,当Sm3+的物质的量分数为3%时发光强度达到最大,浓度猝灭机理为电偶极-电偶极相互作用.当Bi3+的物质的量分数在0.3%~1.5%时,对产物Ca0.97Sm0.03SiO3的荧光强度起敏化作用.Sm3+和Bi3+的最佳物质的量分数分别为3%和0.5%.  相似文献   

8.
采用微波固相法制备了CaWO4xEu3+,ySm3+,zLi+红色荧光粉。测量样品的XRD图、激发谱、发射谱及发光衰减曲线,研究并分析了Eu3+、Sm3+、Li+的掺杂浓度,对样品微结构、光致发光特性、能量传递及能级寿命的影响。结果表明,Eu3+、Sm3+、Li+掺杂并未引起合成粉体改变晶相,仍为CaWO4单一四方晶系结构。Eu3+、Sm3+共掺样品中,Sm3+掺杂为3%时,Sm3+对Eu3+的能量传递最有效。Li+掺杂起到了助熔剂和敏化剂的作用,使样品发光更强。在394 nm激发下,与CaWO4:3%Eu3+样品比较,3%Eu3+、3%Sm3+共掺CaWO4及3%Eu3+、3%Sm3+、1%Li+共掺CaWO4样品的发光分别增强2倍及2.4倍。同一激发波长下,单掺Eu3+样品寿命最短,Sm3+、Eu3+共掺样品随Sm3+浓度增加,寿命先减小后增加,且掺杂了Li+的样品比不掺Li+的样品5D0能级寿命有所增加。  相似文献   

9.
以硝酸镁(Mg(NO3)2·6H2O)和硼砂(Na2B4O7·10H2O)为原料,稀土元素Eu3+为激活剂,采用聚乙烯吡咯烷酮(PVP)辅助共沉淀法得到前驱体,并通过焙烧制备了多级结构Mg3B2O6:Eu3+花状微球。通过XRD、SEM、TEM以及荧光光谱等手段分别对前驱体煅烧产物的结构、形貌、组成和荧光特性进行了表征。实验表明,在波长为393 nm激发光的激发下,所得到的产品在612 nm处有明显的特征发射峰,对应于Eu3+的(5D07F2)特征跃迁发射。这一荧光性质使得该材料在荧光灯、显示系统和光电设备应用中具有广阔的前景。同时我们还探讨了微球的形态、Eu3+的掺杂量及焙烧温度对花状微球荧光性能的影响。  相似文献   

10.
以硝酸镁(Mg(NO3)2·6H2O)和硼砂(Na2B4O7·10H2O)为原料, 稀土元素Eu3+为激活剂, 采用聚乙烯吡咯烷酮(PVP)辅助共沉淀法得到前驱体, 并通过焙烧制备了多级结构Mg3B2O6: Eu3+花状微球。通过XRD、SEM、TEM以及荧光光谱等手段分别对前驱体煅烧产物的结构、形貌、组成和荧光特性进行了表征。实验表明, 在波长为393 nm激发光的激发下, 所得到的产品在612 nm处有明显的特征发射峰, 对应于Eu3+的(5D07F2)特征跃迁发射。这一荧光性质使得该材料在荧光灯、显示系统和光电设备应用中具有广阔的前景。同时我们还探讨了微球的形态、Eu3+的掺杂量及焙烧温度对花状微球荧光性能的影响。  相似文献   

11.
通过高温固相反应法制备了Ba0.85Ca0.15Ti0.90Zr0.10O3xSm3+(BCTZ∶xSm3+,x=0.0%、0.2%、0.4%、0.6%、0.8%、1.0%,物质的量分数)陶瓷,系统研究了其微观形貌、铁电性能、储能性能和光致发光性能。研究表明,Sm3+掺入后,陶瓷平均晶粒大小明显下降,致密度显著提高。所有陶瓷均表现出典型的铁电性。BCTZ∶xSm3+陶瓷放电储能密度得到了极大的提高,BCTZ∶1.0% Sm3+陶瓷放电储能密度较纯BCTZ陶瓷可提高约49.0%。此外,在408 nm光的激发下,BCTZ∶xSm3+陶瓷在596 nm左右表现出强烈的橙红色发光,且发光强度相对可调性可达449%。  相似文献   

12.
采用共沉淀法及1 200 ℃后续煅烧4 h,成功制备了CaSb2O6:Bi3+,Eu3+荧光粉,并对其结构及发光性能进行了研究。所制备荧光粉颗粒为六边形类圆饼状,平均尺寸在100~600 nm之间。对CaSb2O6:Bi3+,Eu3+发光的机理分析表明,Bi3+对Eu3+的发光存在高效的敏化与能量传递。当Bi3+和Eu3+的掺杂浓度分别为0.5%和8%,Eu3+位于580 nm(5D07F0 )处的荧光发射显著增强,Bi3+,Eu3+共掺样品的荧光强度是CaSb2O6:Eu3+的10倍左右。调节Bi3+/Eu3+离子掺杂比,色坐标呈现了从蓝、白光到红光的变化,表明该荧光粉可分别作为蓝或红色荧光粉使用,甚至可实现从蓝、白光到红光的自由调控,这为白光LED荧光粉的发展提供了参考。  相似文献   

13.
SrAl12O19:Mn4+是一种用于高显色性白光发光二极管的候选红色荧光材料。本论文研究了Mg2+、Zn2+和Ge4+离子的掺杂效应以及Ge3+、Ca2+和Ba2+离子的取代效应SrAl12O19:Mn4+荧光材料性能的影响。样品通过高温固相反应制备,焙烧温度在1 250~ 1 500℃之间。利用X射线衍射技术表征了材料的相纯度,用荧光激发光谱和发射光谱表征了材料的荧光性能。研究结果指出,与未进行Mg2+或Zn2+掺杂的样品相比,Mg2+或Zn2+离子对Al3+格位的掺杂可以使材料的发光强度提高~60%,其原因被认为是掺杂促进了激活剂Mn4+离子进入晶格,其过程可以表示为:MO+MnO2=MAl''+MnAl·+3OO×(M=Mg,Zn),电子顺磁共振谱支持这一结果。Ge4+离子的掺杂使材料的发光性能明显下降。Ge3+离子可以取代Al3+离子形成全范围的固溶体,其中少量Ge3+离子的掺杂可以使材料的荧光发射强度提高~13%,而掺杂量进一步提高使材料的荧光性能下降。Ca2+和Ba2+对Sr2+的取代仅形成有限范围的固溶体。Ca2+的取代使材料的发光性能提高;而 Ba2+的取代使材料的发光强度下降。  相似文献   

14.
通过高温固相法合成了双钙钛矿型Ca2Gd1-xTaO6xTb3+(CGTO:xTb3+)绿色荧光粉。采用X射线衍射、扫描电镜、荧光光谱、荧光衰减曲线、量子效率(η)测试分别表征了CGTO: xTb3+荧光粉的物相、形貌和荧光性质。在紫外光激发下,CGTO: xTb3+荧光粉实现了较强的绿光发射,绿光为Tb3+离子的5D4-7F5跃迁。通过变温发射光谱研究发现CGTO:0.15Tb3+荧光粉的热猝灭活化能为0.181 9 eV。在255 nm的激发下,最佳Tb3+掺杂浓度的CGTO:0.15Tb3+荧光粉的量子效率为32.32%。  相似文献   

15.
近红外荧光粉在生物活体成像领域展现出重要的应用前景。但活体成像用近红外荧光粉存在种类匮乏、耐温性差等瓶颈问题。采用固相法合成了宽带近红外Ca4HfGe3O12xCr3+(0≤x≤0.09)荧光粉。X射线衍射和能谱分析的结果表明Cr3+离子成功进入Ca4HfGe3O12晶格。在469 nm蓝光激发下,Ca4HfGe3O12∶xCr3+荧光粉发射出690~1 200 nm的宽带近红外光,峰值波长为825 nm (4T2-4A2),半高宽达到141 nm,Cr3+掺杂最佳浓度为0.03。依据激发光谱峰形和寿命衰减行为,证实Cr3+仅占据基质中一种阳离子格位。Ca4HfGe3O12∶0.03Cr3+荧光粉的荧光量子效率为33.63%,该荧光粉发射光谱在400 K下的积分面积为室温下的60.5%,表明该样品具有优良的热稳定性。采用自制近红外荧光粉转换器件照射人手掌和滤波片遮挡的水果,观察到清晰地静脉血管和遮挡水果的轮廓。  相似文献   

16.
通过静电纺丝法制备Mn4+掺杂的Co3O4复合纳米纤维,利用XRD、XPS、BET、SEM和电化学工作站等对材料的结构、成分、形貌和电化学性能进行表征与测试。研究发现,通过Mn4+掺杂,Co3O4复合纳米纤维的电化学性能得到明显改善。当nConMn=20∶2时,相应的复合纤维具有较大比表面积68 m2·g-1,而且该样品呈现出清晰的氧化还原峰,在1 A·g-1的电流密度下,放电比电容量为585 F·g-1,这比纯Co3O4纳米纤维的416 F·g-1,有显著提高;循环500圈电容保持率达到82.6%,而纯Co3O4纳米纤维则是76.4%。  相似文献   

17.
采用水热法制备出Ca9Y(PO47:Ce3+,Tb3+纳米荧光粉,通过XRD、SEM和荧光光谱等对样品进行了分析,研究在Ca9Y(PO47基质中引入Ce3+,Tb3+离子对发光性能的影响规律。研究发现因Tb3+离子自身能量交叉驰豫的存在,使得单掺Tb3+时,通过调节Tb3+离子的浓度可以实现对发光颜色的控制。同时研究了Ce3+-Tb3+之间的能量传递为电多极相互作用的偶极-四极机制,Ce3+-Tb3+之间最大的能量传递效率为55.6%。Ca9Y(PO47:Ce3+,Tb3+的发光颜色可以通过激活离子之间的能量传递和共发射得到可控调节。SEM分析表明荧光粉颗粒尺寸在100 nm左右,分散性好。  相似文献   

18.
通过高温固相反应合成了新型的蓝色荧光粉Sr7Zr(PO4)6xEu2+。通过X射线粉末衍射(XRD)、紫外可见(UV-Vis)吸收光谱、荧光光谱研究了Sr7Zr(PO4)6xEu2+材料的相纯度及荧光性质。结果表明,Eu2+掺杂获得的Sr7Zr(PO4)6xEu2+荧光粉为纯相,且200~400 nm范围内的近紫外(NUV)光均能对其进行有效的激发。在315 nm的激发下,Sr7Zr(PO4)6xEu2+荧光粉发射出峰值位于415 nm左右的蓝光,且Eu2+在Sr7Zr (PO4)6基质中的最佳掺杂浓度为0.05,相应的CIE色度坐标为(0.164,0.021),比商用BaMgAl10O17∶Eu2+(BAM)蓝色荧光粉具有更高的色纯度。  相似文献   

19.
采用具有白磷钙矿结构的磷酸盐作为目标产物,通过高温固相法制备了发光颜色可调的 Ca8MgBi(PO4)7∶Ce3+,Tb3+荧光粉。利用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)和荧光光谱等表征手段对其物相组成、微观形貌及发光性能进行了详细研究。结果表明:掺杂少量的 Ce3+、Tb3+并没有改变 Ca8MgBi(PO4)7基质的晶体结构。荧光光谱和荧光寿命曲线确定了 Ce3+-Tb3+之间存在能量传递,其能量传递机制为四极-四极相互作用,能量传递效率可达 81%。固定 Ce3+浓度而逐渐增加 Tb3+的掺杂量时,系列Ca8MgBi(PO4)7∶0.08Ce3+,yTb3+荧光粉的发光颜色可由蓝光调至绿光,从而实现发光颜色的可控化。  相似文献   

20.
采用静电纺丝法成功制备了La3+掺杂CaFe2O4材料。通过X射线衍射、扫描电子显微镜和X射线光电子能谱对La3+掺杂CaFe2O4材料的结构和形貌进行了表征。随后,研究了La3+的掺杂量(质量分数)对CaFe2O4气敏性能的影响。研究表明,3% La3+掺杂CaFe2O4材料在室温下对100 μL·L-1甲醛的响应最高(Ra/Rg=14.1)。更为重要的是,对甲醛的最低检测限低至0.1 nL·L-1,并且响应/恢复时间仅为4.3 s/8.4 s。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号