首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用直接共聚法合成表面含有乙烯基的具有立方相Ia3d结构的介孔硅分子筛(V-ClMS),然后对乙烯基团进行环氧化制备得到表面环氧基功能化的介孔硅分子筛(E-CIMS),采用X射线衍射、N2吸附-脱附、透射电镜、热重分析和13C固体核磁共振对制备的介孔硅分子筛进行了表征.结果表明,表面含有乙烯基的V-ClMS介孔硅分子筛能被一步成功合成,并易于发生环氧化而获得表面环氧基功能化的E-CIMS介孔硅分子筛.将E-CIMS介孔硅分子筛作为载体用于固定化青霉素G酰化酶(PGA),研究了表面环氧基团对固定化PGA初活性和操作稳定性的影响.结果表明,随着表面环氧基团数量的增加,介孔硅分子筛孔径减小,表面疏水性增加,导致载酶量和初活性减小.但介孔硅分子筛表面适量的环氧基团能增强E-CIMS介孔硅分子筛与PGA之间的相互作用,从而提高固定化PGA的操作稳定性.  相似文献   

2.
青霉素酰化酶在含铁MCM-41介孔分子筛上的固定化研究   总被引:9,自引:0,他引:9  
制备了具有长程有序结构、孔径分布狭窄的含铁MCM-41介孔分子筛,利用直接法和共价结合法将青霉素酰化酶固定在分子筛表面。结果表明,两种方法制备的固定化酶对青霉素G水解反应的表观活性分别为782U/g和256U/g;经6次连续操作使用,二者保持初始活性的49.4%和81.2%,后者的操作稳定性好于前者。共价结合法制备的固定化酶活性较低,是由于Fe—MCM-41表面修饰后比表面积和孔径明显减小所致。  相似文献   

3.
薛屏  徐立冬 《分子催化》2006,20(6):579-584
利用表面嫁接法和乙烯基环氧化法制备了环氧基团功能化介孔分子筛G-SBA-15和O-SBA-15,并对其结构和表面性质进行了表征.结果表明,G-SBA-15和O-SBA-15均具有良好的长程有序结构,二者环氧基团的含量分别为0.78 mmol/g和0.37 mmol/g,在O-SBA-15表面还存在一定数量的乙烯基基团.G-SBA-15和O-SBA-15用于固定青霉素酰化酶(pen ic illin G acylase,PGA),固定化酶PGA/G-SBA-15和PGA/O-SBA-15在37℃时水解青霉素G钾制备6-氨基青霉烷酸(6-APA)的表观活性分别为1075 IU/g和1761 IU/g.PGA/G-SBA-15经4次使用后表观活性趋于稳定,经10次使用后保持其初始活性的83.7%.PGA/O-SBA-15在重复使用中,表观活性出现持续衰减,10次使用后保持其初始活性的51.6%,PGA/G-SBA-15的操作稳定性明显好于PGA/O-SBA-15.  相似文献   

4.
环氧基团可以在温和条件下与酶分子的氨基反应使其固定于载体表面.选用含有活性环氧基团的甲基丙烯酸缩水甘油酯(GMA)和亲水性的N-乙烯吡咯烷酮(NVP)两种单体,以N,N′-亚甲基双丙烯酰胺(MBAA)为交联剂,甲醇水溶液作致孔剂,液体石蜡为主介质,通过反相悬浮聚合技术成功地合成了亲水性大孔GMA-NVP-MBAA三元共聚物载体(GNM).通过调节交联剂的用量和单体NVP与GMA的比例,可以调节载体的孔径、比表面积及在水中的溶胀性能.将巨大芽孢杆菌青霉素酰化酶共价偶联于平均孔径为16.5nm、表面环氧基含量为0.906mmol/g的GNM共聚物载体,制成固定化酰化酶,其表观活性高达625U/g,水解青霉素G钾盐的最适宜温度为50℃,pH值为8.0.固定化酶在4℃保存40d,活性保持不变.经3次使用后,活性达到稳定值(601U/g左右),再经12次使用,活性几乎保持不变.  相似文献   

5.
青霉素G酰化酶(PGA)是一种重要的工业生物催化剂,常用于以青霉素G为底物生产7-氨基去乙酰氧基头孢烷酸(7-ADCA)和6-氨基青霉烷酸(6-APA)等半合成β-内酰胺类抗生素.然而,PGA较差的稳定性和可重复使用性能限制了其在工业上的广泛应用.因此,将PGA固定在固体载体上是很有必要的,可以形成一种可重复使用的高性能的多相催化剂.用于生物酶固定化的良好载体应具备以下条件:(1)载体表面具有可用于与生物酶多点结合的高密度的官能团;(2)载体具有较大的比表面积以固定更多的生物酶.通常情况下,可以通过减小载体的粒径来增加其比表面积,然而,小粒径的载体很难从反应混合液中分离出来,造成固定化酶回收使用困难.为了将聚合物微球的优异固定化性能与磁性纳米粒子的独特顺磁性结合起来,我们制备了一种含环氧基团的顺磁性聚合物微球作为PGA的固定化载体.但由于Fe_3O_4纳米颗粒具有较高的表面能,在反相悬浮聚合反应过程中容易团聚成大颗粒,从而导致制备的顺磁性聚合物微球的磁体含量、表面形貌和粒径分布存在差异.此外,Fe_3O_4纳米颗粒与聚合反应单体之间的相容性不好,使得部分磁性颗粒不能很好地包埋于聚合物微球内部,影响固定化酶的活性和操作稳定性.本文以N,N′–亚甲基双丙烯酰胺为交联剂,以甲基丙烯酸缩水甘油酯和烯丙基缩水甘油醚为功能性单体,用反相悬浮聚合方法在SiO_2包覆的Fe_3O_4纳米颗粒表面成功制备出含环氧基团的顺磁性聚合物微球.用SEM,FT-IR,XRD,VSM和低温氮气吸附等手段对含环氧基团的顺磁性聚合物微球进行了表征.研究了SiO_2对Fe_3O_4纳米颗粒的包覆和Fe_3O_4/SiO_2纳米颗粒的数量对于固定化酶的初始活性和操作稳定性的影响.SiO_2在反相悬浮聚合过程中发挥重要作用,用SiO_2对Fe_3O_4纳米颗粒进行亲水性改性,有效改善了Fe_3O_4纳米颗粒与聚合反应单体的相容性,将其引入反相悬浮聚合体系中,可以制备得到球形度好、粒径分布均匀和超顺磁性的含环氧基团的顺磁性聚合物微球,其中当Fe_3O_4/SiO_2纳米颗粒的质量比为7.5%时制备的含环氧基团的顺磁性聚合物微球具有最好的PGA固定化性能.PGA通过其活性非必需侧链基团–氨基与顺磁性聚合物微球表面的环氧基团的共价结合来制备顺磁性固定化酶,该固定化PGA的初始活性为430 U/g(wet),在外加磁场的作用下容易回收使用,重复使用10次后可保留99%的初始活性,具有良好的热稳定性和酸碱稳定性,具有较好的工业应用前景.  相似文献   

6.
In this work, a new type of penicillin G acylase (PGA)-based monolithic silica support was developed and evaluated for the chiral separation in HPLC. The preparation procedure consisted of two steps: preparation of an epoxy derivatized monolithic silica column and chemical modification of the epoxide groups with the enzyme chiral selector. The epoxy Silica-Rod column for the immobilization of PGA was prepared with the in situ modification process by using epoxy-silanes and the identification of the species bound to the surface was achieved by solid-state nuclear magnetic resonance. The enzyme was covalently immobilized to the surface of the derivatized monolithic column. The enantioselectivity and the performance of the developed column are discussed and compared to the corresponding experimental data obtained with a PGA-based microparticulate (5 microm) silica column.  相似文献   

7.
亲水性含环氧基磁性聚合物微球的制备与性能表征   总被引:9,自引:0,他引:9  
选择甲酰胺作磁性Fe3O4微晶的分散剂,通过设计反相悬浮聚合体系,合成了粒径分布窄、球状亲水性含环氧基磁性聚合物(MGM).利用扫描电子显微镜(SEM)、红外光谱(FT-IR)、X射线粉末衍射仪(XRD)、振动样品磁强计(VSM)和低温N2吸附以及化学分析方法对聚合物进行了性能表征.结果表明,合成的MGM呈球形,且粒度分布较窄,粒径为0.13~0.28 mm的粒子占91%;甲酰胺分散Fe3O4,微晶表面的亲水性进一步增强,单体甲基丙烯酸缩水甘油酯和N,N′-亚甲基双丙烯酰胺交联共聚生成的胶粒能够包埋Fe3O4微晶形成胶核,胶核聚集形成均匀、稳定的MGM微球.MGM中Fe3O4含量为6.17%时,比饱和磁化强度σs达6.5 emu/g;其比表面积、平均孔径和孔容分别为117.6 m2/g,15.6 nm和0.46 cm3/g,表面环氧基团含量为0.53 mmol/g.MGM借助自身的活性环氧基团在十分温和的条件下共价偶联青霉素酰化酶(penicillin G acylase EC 3.5.1.11,简称PGA),制备的固定化酶在37℃下催化水解青霉素G钾生成6-氨基青霉烷酸(6-APA)的表观活性达502IU/g,并且在使用过程中没有出现磁聚集现象.  相似文献   

8.
选用反应性单体甲基丙烯酸缩水甘油酯,以N,N'-亚甲基双(丙烯酰胺)为交 联剂,甲酰胺为致孔剂,用反相悬浮聚合方法制得一系列珠状共聚物载体,通过测 定其表面的物化性能、表面的环氧基浓度和固定青霉素酰化酶活性,讨论了交联剂 用量、配比及合成条件对共聚物表面性能和固定化青霉素酰化酶活性的影响。  相似文献   

9.
介孔材料的修饰及固定青霉素酰化酶的稳定性研究   总被引:4,自引:0,他引:4  
利用扩孔剂的作用合成出较大孔径(12 nm)的介孔材料SBA-15, 并进行表面氨基修饰, 以此为载体, 以戊二醛为交联剂, 对青霉素酰化酶进行组装固定, 并对固定化青霉素酰化酶(PGA)的稳定性进行了深入的研究. 实验结果表明, PGA与载体交联后仍保持活性. 热稳定性研究结果表明, 制备的固定化青霉素酰化酶在低于60 ℃时保持稳定; pH在6~11范围内保持稳定; 固定化酶重复使用10次之后, 仍具有高达90%的残留活力.  相似文献   

10.
Circular dichroism (CD) was used to characterize the secondary structure of penicillin G acylase upon covalent immobilization on silica nanoparticles. Covalent immobilization was achieved by functionalizing the silica nanoparticles with glutardialdehyde and coupling to the free NH(2) groups of the enzyme (lysine and arginine side chains). The loading of the covalently bound enzyme was increased up to saturation, which was reached at 54.6 mg immobilized enzyme per g silica nanobeads. For structural characterization of the commercially available enzyme its exact molecular mass was determined by mass spectrometry in order to enable precise evaluation of the CD data. The fraction of secondary structure elements of the free and immobilized enzyme were estimated from the respective CD spectra using standard algorithms (CONTINLL, CDSSTR, SELCON3). The fractions obtained by the different algorithms for the free enzyme agreed well with one another and also with data from X-ray diffraction described in the literature. Interestingly, the secondary structure fractions found for the immobilized enzyme were very similar to the free enzyme and nearly constant over all experiments. These results indicate that even a loading of up to 55.8 mg/g (enzyme per silica nanoparticles) causes only slight structural changes. However, the specific activity determined by a kinetic assay decreased by around 60%, when increasing the loading from 14.9 to 55.8 mg/g. Because of the fact that we found no major changes in the secondary structure, diffusion limitation seems to be the main reason for the decline of the specific activity.  相似文献   

11.
 以 Span-60 和 Tween-20 为复合分散剂, 以 N,N′-亚甲基双丙烯酰胺为交联剂, 以甲基丙烯酸缩水甘油酯和烯丙基缩水甘油醚为功能性单体, 用反相悬浮聚合技术成功制备了含环氧基团的聚合物载体, 并用红外光谱和低温氮吸附对聚合物载体进行了表征. 以 Span-60 和 Tween-20 为复合分散剂, 替代原有的 Span-60 和硬脂酸钙复合分散剂, 大幅度减少了后处理过程中所需的时间和溶剂用量, 使固定化青霉素酰化酶的活性从 215 U/g 提高到 320 U/g. 与游离酶相比, 该固定化酶具有较好的操作稳定性, 在 pH = 5~11 和不高于 50 oC 的环境中具有较好的稳定性. 固定化酶的水解反应动力学过程与游离酶相同, 均遵循米氏反应动力学, 而且活性与底物浓度密切相关. 当底物浓度为 6.5% 时, 固定化酶的活性最高, 达到 353 U/g.  相似文献   

12.
Pig muscle aldolase was covalently attached to a silica-based support possessing aldehyde functional groups. The activity of the immobilized enzyme was 37 U/g solid, and the specific activity calculated on a bound protein basis was 1.9 U/mg protein. The optimum pH for the catalytic activity was pH 7.5. The apparent optimum temperature was found to be 45 degrees C. The Km app value of the immobilized aldolase with D-fructose 1,6-diphosphate as substrate was 1.25 X 10(-4) M. The conformational stability was improved by the immobilization. The immobilized aldolase was used for the continuous splitting of D-fructose 1,6-diphosphate.  相似文献   

13.
Cellulose-based carriers Granocel were specially prepared and optimised for covalent immobilization of enzymes. The effects of carrier characteristics such as pore size, chemistry of anchor groups and their density on invertase immobilization efficiency were evaluated. It was found that the preferential adsorption/binding of the enzyme to a carrier during coupling and its activity after immobilization depended on microenvironmental effects created by hydrophilic surface of the carrier, functional groups and their activators. The best preparations (activity approx. 300 U/mL, high storage stability) were obtained for NH2-Granocel activated with glutaraldehyde. It is probably due to Granocel modification with pentaethylenehexamine that gave a 19-atom spacer arm. The enzyme concentration in coupling mixture was optimised as well. The kinetic parameters of sucrose hydrolysis for native and immobilized invertase were evaluated. Compared to the native invertase, K m value of immobilized enzyme was only twice higher with about three times lower substrate inhibition. Reaction runs in a well mixed batch reactors with native and immobilized invertase showed slightly slower reaction rate in the case of the enzyme covalently bound to Granocel. Very good stability of cellulose-based carrier was proved experimentally by 20 successive reaction runs in a batch reactor.  相似文献   

14.
In this work, the relationships between catalytic performances of penicillin G acylase (PGA) and the molar ratio of carrier, thermo‐sensitive tri‐block polymer, poly (N,N‐diethylacrylamide‐b‐ β‐hydroxyethyl methacrylate‐b‐glycidyl methacrylate) (PDEA‐b‐PHEMA‐b‐PGMA) were studied firstly, and result documented the optimal molar ratio was nDEA:nHEMA:nGMA = 100:47:24, which presented a suitable lower critical solution temperature (LCST) of 35°C and the activity retention ratio of 80.62% (±0.50%). Based on the suitable carrier, immobilization conditions were investigated and optimized. When pH of solution, concentration of PGA, immobilized time, and immobilization temperature were 8.0, 1/10 (m/v), 16 hours, and 36°C, respectively, enzyme loading capacity (L), enzyme activity (Ea), and activity retention ratio (Ar) of PGA arrived at the highest value of 21 223 U, 16 199 U/g, and 93.50% (±0.50%), respectively. Besides, the response rate (Rr) of immobilized PGA was the same as free PGA, the reusable stability (Rs) was 77.00% (±1.00%) after using for 11 times, which indicated that the carrier has better compatibility with L, Ar, Rs, and Rr.  相似文献   

15.
ß-galactosidase from Escherichia coli was immobilized on porous bead cellulose by a benzoquinone coupling method. Optimum conditions for activation and coupling were investigated, and the kinetic parameters of the immobilized enzyme described. The binding capacity was 15.6mg/g of wet conjugate, corresponding to 109 mg/g dry matrix. A saturation activity of 4100 U/g dry cellulose beads was achieved. The apparent Michaelis constant of the immobilized ß-galactosidase at pH 7.6 for orthonitrophenylgalactopyranoside was 2.4 x 10-3 mol/liter, as compared to 2.4 x 10-4 mol/liter of the native enzyme. The stability of benzoquinone-activated bead cellulose and of immobilized ß galactosidase were also determined.  相似文献   

16.
Immobilized penicillin G acylase (PGA) as an important industrial catalyst can catalyze penicillin G potassium (PG) to 6‐aminopenicillanic acid (6‐APA). 6‐APA is an important intermediate for semisynthetic penicillin drugs, which occupies a huge market space in the anti‐inflammatory field; as a result, immobilized PGA occupies a huge market space in the pharmaceutical field. However, at present, there are different degrees of defects in the preparation and production process of immobilized PGAs on the market because of the huge demand; therefore, the performance of immobilized PGA and its productivity will bring huge economic benefits to enterprises. Therefore, research on immobilized PGA has always been a focus. This review first introduces the source, classification, structure, and catalytic mechanism of PGA and then studies the development of immobilization methods, immobilized carriers, reaction media, enzyme activity regeneration, and reactors of immobilized PGA in recent years.  相似文献   

17.
Various glycidyl methacrylate (GMA) copolymers were synthesized by suspension polymerization, using pentaerythritol triacrylate (PETA), trimethylolpropane triacrylate (TMPTA), and trimethylolpropane trimethacrylate (TRIM) as crosslinking comonomers. These copolymers were evaluated for the immobilization of penicillin G acylase. Broad pore-size distribution that was observed was in the range 5-300 nm. Both surface area and pore volume increased with increase in the mole fraction of crosslinking comonomer (increasing crosslink density). The pore volume of the copolymers was more than doubled by including lauryl alcohol as porogen. Binding of penicillin G acylase (PGA) was quantitative on highly crosslinked copolymers. The expression of bound PGA was better on the relatively more hydrophilic GMA-TMPTA and GMA-PETA copolymer supports compared to the GMA-TRIM copolymers. Among the different copolymers studied, GMA-TMPTA copolymer 7411 exhibited highest activity of immobilized penicillin G acylase (167.4 IU/g) with 35.1% expression.  相似文献   

18.
In this paper, the use of penicillin G acylase (PGA) as a biocatalyst and as a chiral selector is described. Penicillin G-acylase is an interesting enzyme used in the manufacture of semisynthetic antibiotics and, in particular, in the production of 6-APA by hydrolysis of penicillin G. Five PGA-based HPLC columns have been prepared by using two different silica supports by employing two immobilization methods, namely "in situ" and "in batch". The effects of the immobilization techniques and of different silica pore size on the catalytic properties of the enzyme as well as the applicability of the PGA-bonded stationary phases as chiral selectors for a number of chiral drugs have been investigated. The HPLC columns based on immobilized PGA combine the hydrolytic activity and the chiral recognition properties of PGA, therefore they have been used for the development of a combined reaction-separation system for chiral and achiral substrates.  相似文献   

19.
For the first time, cefadroxil was synthesized from 7‐Amino‐3‐desacetoxycephalosporanic acid and d ‐hydroxyphenylglycine methyl ester in [Bmim][NTf2]‐phosphate cosolvent capable of dissolving the substrates using the penicillin G acylase (PGA) immobilized on the micrometer‐size magnetic polymer microspheres having high activity of 2,083 U/g. The high synthesis/hydrolysis (S/H) ratio of 1.12 was achieved with 79.0% yield, where only the S/H ratio of 0.19 and yield of 20.0% was obtained using free PGA under the identical optimum reaction conditions. Cefadroxil had been synthesized efficiently in [Bmim][NTf2]‐phosphate cosolvent by the magnetic immobilized PGA, which illuminated that there are two very critical and essential designs, that is, effective support and suitable solvent system by PGA, in enzymatic synthesis of cefadroxil. Obviously, there is great potential for the magnetic immobilized PGA and ionic liquid solvent in application to biocatalysis.  相似文献   

20.
An approach to stable covalent immobilization of chemically modified penicillin G acylase from Escherichia coli on Sepabeads® carriers with high retention of hydrolytic activity and thermal stability is presented. The two amino-activated polymethacrylate particulate polymers with different spacer lengths used in the study were Sepabeads® EC EA and Sepabeads® EC HA. The enzyme was first modified by cross-linking with polyaldehyde derivatives of starch in order to provide it with new useful functions. Such modified enzyme was then covalently immobilized on amino supports. The method seems to provide a possibility to couple the enzyme without risking a reaction at the active site which might cause the loss of activity. Performances of these immobilized biocatalysts were compared with those obtained by the conventional method with respect to activity and thermal stability. The thermal stability study shows that starch-PGA immobilized on Sepabeads EC-EA was almost 4.5-fold more stable than the conventionally immobilized one and 7-fold more stable than free non-modified PGA. Similarly, starch-PGA immobilized on Sepabeads EC-HA was around 1.5- fold more stable than the conventionally immobilized one and almost 9.5-fold more stable than free non-modified enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号