首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
亓树成  刘瑞泉 《应用化学》2012,29(7):836-843
合成了2种癸二酸咪唑啉季铵盐癸二酸-水杨酸咪唑啉季铵盐(SSAI)和癸二酸咪唑啉季铵盐(SAI),并采用失重法和电化学方法研究了这2种咪唑啉季铵盐对N80钢在1 mol/L HCl溶液中的缓蚀性能和吸附行为。 结果表明,在1 mol/L HCl溶液中这2种化合物对N80钢均有较好的缓蚀作用,缓蚀效率大小顺序为SSAI>SAI。 SSAI和SAI均为混合偏阳极型缓蚀剂。 2种化合物在N80钢表面的吸附服从Langmuir吸附等温式,属于化学吸附。  相似文献   

2.
王彬  杜敏  张静 《物理化学学报》2011,27(1):120-126
采用失重法、交流阻抗(EIS)及傅里叶变换红外光谱(FT-IR)、原子力显微镜(AFM)、X射线光电子能谱(XPS)等表面分析测试方法首次研究了硫脲基咪唑啉衍生物(TAI)作为抑制CO2腐蚀的气液双相缓蚀剂的缓蚀行为. 结果表明, 该硫脲基咪唑啉缓蚀剂能有效地抑制Q235 钢在气液双相中的CO2腐蚀. AFM测试结果表明该缓蚀剂能显著地降低碳钢表面的腐蚀破坏, 并且由于碳钢表面形成的缓蚀剂吸附膜的疏水作用,可在AFM探头和碳钢表面之间检测到更大的粘附力, 而探针与试样表面之间的长程静电斥力在气相中增加,在液相中由于表面电荷的屏蔽效应而减小. XPS和FT-IR 光谱测试表明液相中和气相中在碳钢表面形成吸附膜的缓蚀剂成分分别是硫脲基咪唑啉衍生物和其酸水解产物——酰胺. 以上结果也进一步证实了咪唑啉衍生物在酸性溶液中的水解机理.  相似文献   

3.
冯晓娟  石彦龙  安红钢 《化学通报》2014,77(11):1103-1108
以胡麻籽油、羟乙基乙二胺为原料合成咪唑啉中间体,用苄基氯进行改性,得到阳离子咪唑啉衍生物。利用FT IR对合成产物进行了表征,用静态失重法、电化学极化曲线和FESEM对其缓蚀性能进行了评价,并考察了不同缓蚀剂浓度、腐蚀浸泡时间对缓蚀效果的影响,探讨了其在A30钢表面的吸附行为。结果表明,合成的缓蚀剂在盐酸体系中对A30钢有较好的缓蚀性能,在浓度为100mg/L时对低碳钢的缓蚀效率可达87%,并且其产物为阳离子型缓蚀剂,吸附满足Langmuir等温吸附方程。最后采用量子化学方法对其缓蚀剂的缓蚀机理进行了分析。  相似文献   

4.
张志扬  a 陈强b 安德烈  b 《化学学报》2009,67(20):2349-2354
报道了一种便捷合成1-丙炔基芳香化合物的新方法. 在充分探讨反应条件的基础上, 利用硫试剂乙基苯基砜与芳香醛组合, 采用双消除反应成功地一锅合成了一系列1-丙炔基芳香化合物1a~1s. 运用此法不仅合成出一些含有醚键、萘环、杂环以及含有两个1-丙炔基的化合物, 重要的是芳环上含有卤原子(Br和I)的化合物也能顺利地合成出来. 该方法原料易得, 操作简单, 产物容易分离纯化并且产率理想.  相似文献   

5.
咪唑啉衍生物缓蚀剂的定量构效关系及分子设计   总被引:5,自引:0,他引:5  
采用量子化学密度泛函理论(DFT)及线性回归分析方法, 对十一烷基咪唑啉衍生物缓蚀剂抗H2S、CO2腐蚀性能进行了定量构效关系(QSAR)研究. 通过回归分析, 筛选出了影响缓蚀剂缓蚀性能的主要因素, 建立了QSAR模型, 并使用留一法交叉验证对模型的稳定性及预测能力进行了分析. 结果表明, 电子转移参数△N、咪唑环上非氢原子静电荷之和∑Qring及分子极化率α对咪唑啉类缓蚀剂的缓蚀性能有很大的贡献, 所得模型的拟合相关系数(R2)和交叉验证相关系数(q2)分别为0.924 和0.917, 模型对此类缓蚀剂抗H2S、CO2腐蚀性能具有较好的预测效果. 应用QSAR研究结果进行了分子设计, 在理论上提出了一些具有较高抗H2S、CO2腐蚀性能的新型咪唑啉衍生物, 为实验工作者合成新型缓蚀剂提供理论参考.  相似文献   

6.
Corrosion inhibition of three imidazoline derivates with different numbers of benzene rings, namely 2-phenyl-1-ethylamino imidazoline(CI-1), 2-phenyl-1-ethylamino-1-methylbenzyl quaternary imidazoline(CI-12) and 2-phenyl-1-benzoyl ethylamino imidazoline(CI-13), on mild steel in CO2-saturated brine solution was evaluated by mass-loss method and potentiodynamic polarization method. The results show that the three imidazoline derivates can inhibit CO2 corrosion effectively with CI-12 ranking the highest. They mainly restrain the anodic dissolution and act as anodic-type inhibitors. The adsorptions of these derivates on the mild steel surface follow the Langmuir adsorption isothermal equation and belong to chemical adsorption.  相似文献   

7.
In this study, the corrosion performance of carbon steel samples in 0.5 M sulfuric acid by the addition of novel inhibitors, 200 ppm of (25% and 50%) titanium dioxide nanoparticles in benzalkonium chloride, was thoroughly investigated. Gravimetric measurements, cyclic and linear potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and hydrogen collection by water displacement evaluated inhibition performance. Analogously, TiO2/ILB (50%), TiO2/ILB (75%), and ILB inhibitors enhanced corrosion protection with over 80% inhibition efficiency in electrochemical tests. In addition, weight loss and hydrogen collection measurements reached comparable results. According to potentiodynamic polarization curves, inhibitors exhibited dual behavior, but cathodic protection was more predominant. Scanning electron microscopy (SEM) was employed to examine the surface morphology before and after immersion using corrosion tests. The correlation between electronic properties and inhibition efficiencies of tilted inhibitors was determined by simple linear regression. Electronic properties were calculated for neutral and protonated forms using a polarizable continuum model by the DFT method at the B3LYP/6-311+G (d, p) level of theory. The active adsorbed sites of HM1-HM3 on the metal surface were determined by analyzing their corresponding electrostatic surface potentials (ESP). Furthermore, molecular dynamics simulations were performed to illustrate the most conceivable adsorption configuration between the inhibitors and metal surfaces.  相似文献   

8.
采用弱极化法、电化学阻抗谱等手段研究了烷基咪唑啉和硫脲基烷基咪唑啉缓蚀剂对Q235钢在饱和CO2盐溶液中的缓蚀行为变化, 探讨了吸附膜的形成与衰减规律. 结果表明, 烷基咪唑啉和硫脲基烷基咪唑啉缓蚀剂都是以控制阳极过程为主的混合界面型缓蚀剂. 在85 ℃下, 烷基咪唑啉成膜相对较慢, 吸附能力较弱, 容易发生脱附; 而硫脲基的引入, 使得硫脲基烷基咪唑啉缓蚀剂溶液存在自动修复能力, 增强了咪唑啉环的吸附性能, 提高了缓蚀剂的缓蚀性能; 硫脲基烷基咪唑啉水解开环后, 成膜性能下降, 膜寿命和缓蚀效率也大大降低. 最后采用量子化学计算对上述结论进行了验证和解释.  相似文献   

9.
咪唑啉缓蚀剂在Fe(001)表面吸附行为的分子动力学模拟   总被引:3,自引:0,他引:3  
采用分子动力学模拟方法研究了5种不同烷基链长的咪唑啉类缓蚀剂在Fe(001)表面的吸附行为和成膜机制,并对其缓蚀机理进行了深入分析.研究结果表明:咪唑啉分子的极性头基会吸附在金属表面上,而烷基碳链则背离金属表面,并通过自身的扭转形变实现稳定吸附;随着烷基链长的增加,缓蚀剂与金属基体的结合强度逐渐增加,所形成缓蚀剂膜的致密性也逐渐增大;致密的缓蚀剂膜能有效地阻碍腐蚀介质向金属表面扩散,从而达到延缓金属腐蚀的目的.5种缓蚀剂缓蚀性能的理论评价结果与实验结果吻合.  相似文献   

10.
The fractional free volumes(FFVs) of the adsorption films formed with different ratios of dipropargyl methoxythiourea imidazoline(DPFTAI) and pyridine quaternary ammonium salt(16BD) were calculated by simulation to determine their synergistic corrosion inhibition effect. The results suggest that the composite corrosion inhibitor at the molar ratio between DPFTAI and 16BD of 4:1 gives the best corrosion inhibition effect. This simulation method to predict the synergistic effect between corrosion inhibitors was further validated by mass loss and electrochemical experiments. This finding delivers valuable understandings of inhibition mechanism of corrosion inhibitors.  相似文献   

11.
流动条件下两种不同亲水基团咪唑啉型缓蚀剂的缓蚀性能   总被引:3,自引:0,他引:3  
选择了两种含有不同亲水基团的咪唑啉型缓蚀剂, 即1-胺乙基-2-十一烷基咪唑啉(AEI-11)和1-羟乙基-2-十一烷基咪唑啉(HEI-11), 分别在静态及动态条件下,采用失重法、极化曲线法、电化学阻抗谱法研究了上述缓蚀剂对N80钢在CO2饱和的3%(w)NaCl溶液中的缓蚀性能. 研究结果表明, 无论在静态和动态条件下, HEI-11均表现出更佳的缓蚀性能, 即咪唑啉型缓蚀剂的缓蚀性能与亲水基团的极性成正比; 在流动条件为5 m·s-1时, 缓蚀剂的缓蚀效率显著降低. 为了进一步研究缓蚀剂的缓蚀性能与其结构的关系, 运用量子化学法计算了缓蚀剂的EHOMO(最高占有分子轨道)、ELUMO(最低空分子轨道), 结果表明缓蚀剂的缓蚀效率与EHOMO成正比, 与ELUMO及ELUMO与EHOMO的差值驻E成反比.  相似文献   

12.
Two pyrimidine-pyrazole derivatives have been investigated as corrosion inhibitors for mild steel in acidic medium using weight loss measurement, polarization curve and electrochemical impedance spectroscopy (EIS). The results obtained reveal that these compounds perform as corrosion inhibitors for mild steel in 1 M HCl. The values of inhibition efficiency calculated from three experimental techniques are reasonably in good agreement. The adsorption process of these compounds on surface of mild steel obeys to El Awady isotherm. Also, the adsorption process of inhibitors studied explaining by surface analysis (EDX). This work followed by in silico approach studies. Firstly, we used Marvinsketch.18 program in order to detect predominant form of inhibitors in electrolytic solution and then computed by Gaussian 09 based on the DFT method at B3LYP/6-31G (d,p).The results obtained theoretically are in good correlation with those obtained experimentally.  相似文献   

13.
采用基于第一性原理的密度泛函理论结合周期平板模型方法, 研究了甲醇分子在FeS2(100)完整表面的吸附与解离. 通过比较不同吸附位置的吸附能和构型参数发现: 表面Fe位为有利吸附位, 甲醇分子通过氧原子吸附在表面Fe位, 吸附后甲醇分子中的C―O键和O―H键都有伸长, 振动频率发生红移; 甲醇分子易于解离成甲氧基CH3O和H, 表面Fe位仍然是二者有利吸附位. 通过计算得出甲醇在FeS2(100)表面解离吸附的可能机理: 甲醇分子首先发生O―H键的断裂, 生成甲氧基中间体, 继而甲氧基C―H键断裂, 得到最后产物HCHO和H2.  相似文献   

14.
Imidazopyridine derivatives, namely 4‐methoxy‐N‐((2‐(4‐methoxyphenyl)H‐imidazo[1,2‐a]pyridin‐3‐yl)methylene)benzenamine (MMPIPB) and 4‐chloro‐N‐((2‐(4‐methoxyphenyl)H‐imidazo[1,2‐a]pyridin‐3yl)methylene)benzenamine (CMPIPB), were investigated as inhibitors for mild steel corrosion in 15% HCl solution using the weight loss and electrochemical techniques. According to electrochemical impedance spectroscopy studies, MMPIPB and CMPIPB show corrosion inhibition efficiency of 84.8 and 77.2% at 10‐ppm concentration and 98.1 and 94.8% at 80‐ppm concentration, respectively at 303 K. The corrosion inhibition efficiency of both inhibitors increased with increasing inhibitor concentration and decreased with increasing temperature. The adsorption of both inhibitor molecules on the surface of mild steel obeys Langmuir adsorption isotherm. Polarization studies showed that both studied inhibitors were of mixed type in nature. Electrochemical impedance spectroscopy studies showed that for both inhibitors, the value of charge transfer resistance increased and double‐layer capacitance decreased on increasing the concentration of inhibitors. Scanning electron microscopy, energy‐dispersive X‐ray spectroscopy (EDX), and atomic force microscopy were performed for surface study. The density functional theory was employed for theoretical calculations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A specially designed electrochemical cell incorporating a rotating disc electrode has been used for in situ surface‐enhanced Raman spectroscopy (SERS) studies of the adsorption of inhibitors of carbon dioxide corrosion onto silver‐coated mild steel electrodes. It is shown that SERS‐active inhibitors comprising aromatic moieties may be detected using the SERS technique. Furthermore, the efficacy of adsorption of corrosion inhibitors employed in the present study is optimal near the open cell or corrosion potential, demonstrating that electrode polarization induces electrostatic forces of repulsion that retard the adsorption of the inhibitor to the corroding steel surface. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
The dissociation of protonated alkyl benzoates (para H, CN, OMe and NO(2)) into protonated benzoic acids and alkyl cations was studied in the gas phase. It was found that the product ratio depends on the substituent at the para position of the phenyl ring. The substituent effect is probably the result of the formation of an ion-neutral complex intermediate that decomposes to an ion and a neutral, according to the relative proton affinities of the two moieties. The experimental results and theoretical calculations indicate that the favored protonation site in these compounds is the ester's carbonyl and that proton transfer from the phenyl ring to the ester group is very likely to occur under chemical ionization conditions. It is most probable that the carbonyl protonated form is a common intermediate in the fragmentation process, regardless of the protonation site.  相似文献   

17.
The adsorption behaviour of phenyl phosphate, which is an available biomolecule, on NiCr alloys was investigated. Atomic flame spectroscopy was used to characterize the elemental dissolution during immersion in neutral aqueous solution of 0.09 w% sodium chloride, 37°C. Phenyl phosphate is shown to reduce the release of both Ni2+ and Cr3+ ions. XPS analyses evidence the formation of a passive film which is mainly consisted in dichromium trioxide and an ultrafilm layer of phenyl phosphate is adsorbed at the passive film surface. DFT+U calculations show that the phenyl phosphate self-assembling at a Cr2O3 surface is thermodynamically favoured, with calculated adsorption energy of 2.9 eV. The first half of this value is due to the interaction with the surface, and the second one is due to self-assembling. This study suggests that phenyl phosphate has an important capacity to prevent, in neutral liquid environment, the release of Cr-Ni surface ions thanks to self-assembling in an inner sphere adsorption on the passive film surface. The phosphate group is covalently anchored to the surface. However, the phenyl ring has two roles: (i) it strongly contributes to the self-assembling and (ii) it acts as a hydrophobic function.  相似文献   

18.
2‐[Bis(pentafluorophenyl)boryl]azobenzenes bearing hydrogen, methoxy, dimethylamino, trifluoromethyl, fluoro, n‐butyl, and tert‐butyldimethylsiloxy groups at the 4′‐position or methoxy and bromo groups at the 4‐position have been synthesized. The 4‐bromo group of the 2‐boryl‐4‐bromoazobenzene derivative was converted to phenyl and diphenylamino groups by palladium‐catalyzed reactions. The absorption and fluorescence properties have been investigated using UV/Vis and fluorescence spectroscopy. The 2‐borylazobenzenes emitted an intense green, yellow, and orange fluorescence, in marked contrast to the usual azobenzene fluorescence. The 4′‐siloxy derivative showed the highest fluorescence quantum yield (0.90) among those reported for azobenzenes to date. The correlation between the substituent and the fluorescence properties was elucidated by studying the effect of the substituent on the relaxation process and from DFT and TD‐DFT calculations. An electron‐donating group at the 4′‐position was found to be important for an intense emission. Application of fluorescent azobenzenes as a fluorescent vital stain for the visualization of living tissues was also investigated by microinjection into Xenopus embryos, suggesting these compounds are nontoxic towards embryos.  相似文献   

19.
Natural-based corrosion inhibitors have gained great research interest thanks to their low cost and higher performance. In this work, the chemical composition of the methanolic extract of Ammi visnaga umbels (AVU) was evaluated by gas chromatography (GC) coupled with mass spectrometry (MS) and applied for corrosion inhibition of carbon steel (CS) in 1.0 mol/L HCl using chemical and electrochemical techniques along with scanning electron microscope (SEM) and theoretical calculations. A total of 46 compounds were identified, representing 89.89% of the overall chemical composition of AVU extract, including Edulisin III (72.88%), Binapacryl (4.32%), Khellin (1.97%), and Visnagin (1.65%). Chemical (Weight loss) and electrochemical (potentiodynamic polarization curves (PPC), and electrochemical impedance spectroscopy (EIS)) techniques revealed that investigated extract can be used as an effective corrosion inhibitor for carbon steel in 1.0 mol/L HCl solution. At a low dose of 700 ppm, the inhibitory action of AVU extract reached an inhibition efficiency of 84 percent. According to polarization tests, the investigated extract worked as a mixed inhibitor, protecting cathodic and anodic corrosion reactions. The EIS test showed that upon the addition of AVU extract to HCl solution, the polarization resistance increased while the double layer decreased. SEM images showed a protected CS surface in the inhibited solution. Quantum chemical calculations by Density Functional Theory (DFT) for the main components confirmed the major role of heteroatoms and aromatic rings as adsorption sites. Molecular dynamics (MD) simulation was used to study the adsorption configuration of the main components on the Fe(1 1 0) surface. Outcomes from this study further confirmed the significant advantage of using plant-based corrosion inhibitors for protecting metals and alloys.  相似文献   

20.
Infrared absorption spectroscopy performed in situ at the solid–liquid interface revealed that the adsorption on platinum supported catalysts of 1‐(1‐naphthyl)‐ethylamine, which is used as a chiral modifier in hydrogenation catalysis, occurs through the amine group, not the aromatic ring as is widely believed. Comparisons were performed against a set of related modifier compounds with targeted substitutions to help identify the key moiety involved in the adsorption. It was determined that neither naphthalene‐based modifiers without amine groups nor those with tertiary amine moieties are capable of adsorbing on the metal surface to any significant extent. A direct correlation was also found between the ability of the amines to adsorb on the platinum surface and their performance as chiral modifiers that impart enantioselectivity to the hydrogenation of α‐keto esters such as ethyl pyruvate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号