首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《Comptes Rendus Chimie》2015,18(8):823-833
The redox response of three anthracenediones; 4,8-dihydroxy-9,10-dioxo-9,10-dihydroanthracen-1-yl acetate (HACAD), 1,4,5-trihydroxyanthracene-9,10-dione (HAD) and 1,4,5-trihydroxy-2-methyl-3-(3-oxobutyl)anthracene-9,10-dione (HOAD) was probed at the surface of a glassy carbon electrode (GCE) over a wide pH range from pH 3 to pH 12 using voltammetric techniques. Cyclic voltammetry (CV) allowed us to evaluate the redox processes in general. Temperature-dependent sweep rate experiments allowed us to obtain kinetic parameters like the diffusion coefficient and the electron transfer rate constant, which were further used to evaluate the thermodynamics of the processes. Differential pulse voltammetry (DPV) allowed the determination of the number of electrons and protons involved in the Faradaic processes. In addition, square-wave voltammetry (SWV) allowed us to assess the reversible/irreversible nature of the electrode processes and allowed the determination of analytical parameters, such as the limit of detection and the limit of quantification. A thorough UV–vis spectroscopy, in a wide pH range, allowed the determination of the acid-base dissociation constant, pKa, and of the molar extinction coefficient. The pKa values determined by different methods were found to be in very good agreement.  相似文献   

2.
The kinetics of hydrolysis of the medicinally important sulfamate ester EMATE have been probed over a wide pH range and into moderately strong base (H_ region). Analysis of the pH/H_-rate profile, measurements of pKas, solvent-reactivity, kinetic isotope effects and determination of activation data reveal that in the pH range from ∼1 to ∼8 an SN2 (S) solvolytic mechanism is followed and after the pKa of EMATE (pKa ∼9) is passed, a second pathway showing a first-order dependence on base operates and an E1cB mechanism is supported.  相似文献   

3.
The present work reports the redox mechanism of 5-hydroxynaphthalene-1,4-dione (HND), commonly known as juglone, in buffered aqueous media having 50% of ethanol. HND followed different mechanistic routes depending upon the pH of the media and more than one pKa were evaluated from the changes in the slope of the Ep vs. pH plot. The change of pH from acidic to neutral conditions was found to switch the mechanism from CEC to EE mechanism. Pulse techniques were utilized to determine the number of electrons involved in the oxidation and/or the reduction step and to ensure the nature of the redox process. Based upon the obtained results, an electrode reaction mechanism was proposed. Computational studies of HND supported the experimental results. UV-Visible spectroscopy was also employed for the detailed characterization of the compound in a wide range of pH and for the determination of its pKa.  相似文献   

4.
The polarographic behaviour of the drugs, oxazepam and lorazepam, has been investigated over a wide pH range. Different types of wave are obtained depending on the pH. The pKa, values calculated are in good agreement with those obtained from u.v. spectroscopic measurements. For analytical purposes, the optimal pH is 4.7 (acetate supporting electrolyte), the 4-electron reduction wave being measured. A quality control method for the two drugs in different formulations containing 0.5–15 mg of active constituent is described.  相似文献   

5.
The main goal in this investigation was monocratic HPLC determination of dissociation constant values (pK a) of pramipexole and its impurities, BI-II 546 CL, BI-II 751 xx and 2-aminobenzothiazole. The chromatographic method is advantageous as a small amount of substance is needed and the degree of substance purity is less important. Analysis was carried out using stationary phases stable in a wide pH range. Triethylamonium phosphoric buffer was selected as appropriate pH controlling solution because it can cover a wide pH range. Detection was done on two different wavelengths, 262 nm for pramipexole, BI-II 751 xx and 2-aminobenzothiazole and at 326 nm for BI-II 546 CL. The constants were calculated from the typical sigmoidal curves of analyte obtained as retention factor versus the pH of the mobile phase.  相似文献   

6.
NMR titration is an efficient method to determine pKa values of multiprotic acids in aqueous solution. While modern 1D/2D NMR techniques yield chemical shifts with increasing precision, the glass electrode-based pH measurement becomes the limiting factor to affect the precision of the resulting dissociation constants. The pH in the NMR tube can also be deduced from the actual chemical shift of an appropriate monoprotic indicator molecule. In the present work, the in situ NMR pH measurement has been extended for the entire pH range 0-12 using indicators with overlapping ranges of dissociation. In the first, calibrating 1H/31P NMR titration, limiting chemical shifts and pK were determined for each indicator. An analysis of error propagation showed that the accuracy and precision of glass electrodes can be achieved at 1.8 < pH < 12 and even exceeded at pH extremes by NMR indicators, respectively. The assembled set of indicators was applied for in situ pH monitoring in the following “electrodeless” 1H/31P NMR titration of a newly synthesized aminophosphinophosphonic acid. Multivariate nonlinear parameter estimation was used to calculate the pK values that were confirmed by potentiometric titrations.  相似文献   

7.
Thermodynamic pKa values for benzimidazole and several substituted benzimidazoles were determined by CE. Electrophoretic mobilities of benzimidazoles were determined by CE at different pH levels and ionic strengths. The dependence of electrophoretic mobilities on pH was used to obtain pKa values at different ionic strengths. Extrapolations to zero ionic strength were used to determine the thermodynamic pKa values. Using this method the thermodynamic pKa values of 15 benzimidazoles were determined and found to range from 4.48 to 7.38. Results from the CE measurements were compared with spectrophotometric measurements which were evaluated at wavelengths where the highest absorbance difference for varying pH was recorded. The two analytical techniques were in good agreement.  相似文献   

8.
A novel method was applied to the study of swelling kinetics of pH-responsive hydrogels. This technique is based on the pH-dependent electrical conductivity of these materials, which is measured by coating planar interdigitated electrode arrays with thin hydrogel membranes. To demonstrate the utility of the method, the swelling kinetics of a well-characterized pH-responsive hydrogel were studied. Cross–linked copolymers of 2-hydroxyethyl methacrylate (HEMA) with up to 20 mol% dimethylaminoethyl methacrylate (DMA) were studied as a function of copolymer composition in phosphate or triethanolamine buffer at buffer concentrations from 1 to 100 mM. The experiments consisted of measuring the change in electrical resistance of a hydrogel-coated electrode array following a small pH change in the external buffer medium. The characteristic response time to reach a new equilibrium following a pH change was proportional to the concentration of DMA within the polymer and was inversely proportional to the buffer concentration. The characteristic response times for devices tested in phosphate buffer were a function of the magnitude of the pH step, increasing from 2.6 to 5.6 min as the step size increased from 0.2 to 0.57 pH units. However, the response times for devices tested in triethanolamine were independent of step size. The observed dependences upon the values of the dissociation constant (pKa) of the buffering ion, the apparent pKa of DMA, and the pH of the external bath agreed with buffer-mediated diffusion–reaction theory, and as such this conductimetric method represents a powerful tool for the study of swelling kinetics of responsive hydrogels.  相似文献   

9.
We designed and synthesized a new pH fluorescent probe, RCE, based on structural changes of rhodamine dye at different pH values. The probe exhibits high selectivity, high sensitivity and quick response to acidic pH, as well as low cytotoxicity, excellent photostability, reversibility and cell membrane permeability. Fluorescence intensity at 584 nm was increased more than 150-fold within pH range 7.51–3.53. This probe has pKa value 4.71, which is valuable for studying acidic organelles. Because of its long absorption and emission wavelengths, RCE can avoid associated cell damage. The probe can selectively stain lysosomes and monitor lysosomal pH changes in living cells.  相似文献   

10.
The ionization of six compounds of bis-phenolic amides was studied spectrophotochemically in DMF-water mixture. The compounds showed two pKa values in the range of 5.97-7.32 for pKa1 and 7.61-8.44 for pKa2. The obtained values of Ka were normalized using the distribution diagrams of the different species and found to be in the range of 5.81-7.42 for pKa1 and 7.48-8.27 for pKa2.  相似文献   

11.
In this paper the validation of pKa determination in MDM-water mixtures is presented. The MDM-water mixture is a new multicomponent cosolvent mixture (consisting of equal volumes of methanol, dioxane and acetonitrile, as organic solvents) that dissolves a wide range of poorly water-soluble compounds. The cosolvent dissociation constants (psKa) of 50 chemically diverse compounds (acids, bases and ampholytes) were measured in 15-56 wt% MDM-water mixtures by potentiometric or spectrophotometric titration and the aqueous pKa values obtained by extrapolation. Three different extrapolation procedures were compared in order to choose the best extrapolation in MDM-water mixture using a sub-set of 30 water-soluble compounds. The extrapolated results are in good agreement with pKa values measured in aqueous medium. No significant difference was found among these extrapolation procedures thus the widely used Yasuda-Shedlovsky plot was proposed for MDM cosolvent also. Further we also present that the single point estimation based on measurement in 20%/v MDM-mixture using a general calibration equation may be suitable for rapid pKa determination in the early phase of drug research.  相似文献   

12.
13.
Omeprazole is a potent anti-acid drug. Its absorption and mode of action are closely related to its prototropic behavior. In the present study, omeprazole samples from different sources and in different forms were studied spectrophotometrically to obtain pKa values. In the neutral to alkaline pH region, two consistent pKa values of 7.1 and 14.7 were obtained from various samples. The assignment of these pKa values was realized by comparison with the prototropic properties of N(1)-methylated omeprazole substituted on the nitrogen at the 1-position of the benzimidazole ring, which was found to have a pKa of 7.5. The omeprazole pKa of 14.7 is assigned to the dissociation of the hydrogen from the 1-position of the benzimidazole ring and the pKa of 7.1 is assigned to the dissociation from the protonated pyridine nitrogen of omeprazole. The results presented are at variance with those of earlier work.  相似文献   

14.
pH sensitive inverse opal sensors were synthesized using various vinyl monomers containing acidic or basic substituents. Acrylic acid (AA), vinylphosphonic acid (VPA), vinylimidazole (VI), and dimethylaminoethylmethacrylic acid (DMAEMA) were respectively copolymerized with hydroxyethylmethacrylate (HEMA), the building block monomer of the hydrogel via UV-initiated photopolymerization. Opal templating and subsequent template removal enabled the fabrication of four inverse opal (IO) hydrogel colorimetric sensors, which responded to pH in different fashions. pH-dependent swelling of the IO hydrogel induced the red-shift of the diffracted color. The sensors containing AA or VPA, the proton donating monomers showed the color shifts from green to red with pH increase due to the increased concentration of carboxylate anions bound to the hydrogel. Diprotic VPA sensor exhibited two-step increases of diffracted wavelengths at its pKa1 and pKa2 respectively. The sensors containing proton acceptors, VI and DMAEMA showed the pH-dependent color changes in an opposite way to the AA sensor and the VPA sensor since their ionizations take place by lowering pH due to the protonation at the amino groups. The shapes of pH response curves of VI and DMAEMA sensors were similar but pKbs were different from each other. Optical diffraction responses of four sensors were compared with the calculated concentration ratios of the ionized species to the total monomer with pH variation, and a deswelling effect in the vicinities of pKas of phosphate buffer on the swelling response could be explained by shrinkage of PHEMA hydrogel under high ionic environment. In addition, copolymerization of AA, VPA and HEMA was carried out which resulted in a pH sensor exhibiting a wider range of pH for color change.  相似文献   

15.
Three azobenzene pH indicators with amino[bis(ethanesulfonate)] substituents were synthesized and studied by UV–visible absorption spectroscopy in aqueous solution. The indicators exhibit brilliant and distinct colour changes with transitions between pH 1 and 4. Significant changes were observed in the UV–visible spectra on titration with acid with pKa values ranging from 2.2 to 2.8. The indicators demonstrate individual changes in colour as a function of pH. These novel pH indicators complement the existing library of azobenzene indicator dyes and may be useful for environmental situations with high proton concentrations.  相似文献   

16.
A metal ion indicator, Alizarin Red S, was tested for its potential use in uranium selective optode membrane. The water-soluble indicator was lipophilized in the form of an ion pair with tetraoctylammonium bromide, and subsequently immobilized on a triacetyl cellulose membrane. The membrane responds to uranium ions, giving a color change from yellow to violet in acetate buffer pH 5. This optode has a linear range of (1.70-18.7) × 10−5 M of UO22+ ions with a limit of detection of 5 × 10−6 M. The response time of optode was within 6 min depending on the concentration of UO22+ ions. The sensor can readily be regenerated with hydrochloric acid solution (0.01 M). The optode is fully reversible.  相似文献   

17.
A series of substituted azobenzene dyes was found to span a range of 8 pKa units in acetonitrile. The UV absorption spectra of the dyes are responsive to protonation, changing in both absorption maximum and intensity. These characteristics make the dyes useful as indicators for the measurement of pKa values of neutral organic bases that absorb in the visible region of the spectrum.  相似文献   

18.
Optical dihydrogen phosphate-selective sensors that function on the basis of bulk optode principles and are based on two different uranyl salophene ionophores are reported here for the first time. The influence of the optode composition and measuring conditions such as sample pH on the optode response are characterized, along with sensor selectivity and long-term stability. Three plasticizers of different polarity are considered for optode fabrication: bis(2-ethylhexyl)sebacate (DOS), dodecyl 2-nitrophenyl ether (o-NPDDE), o-nitrophenyloctylether (o-NPOE). The compounds 9-(diethylamino)-5-(octadecanoylimino)-5H-benzo[a]phenoxazine (ETH 5294, chromoionophore I) and 9-(diethylamino)-5-[(2-octyldecyl)imino]benzo[a]phenoxazine (ETH 5350, chromoionophore III) are used as H+-selective fluoroionophores that also act as reference ionophores. The resulting optode-based sensors are compared with their ion-selective electrode (ISE) counterparts, and it is revealed that optodes are better suited for operation at physiological pH. The best optode performance was found for the two component optode sensors doped with ETH 5350 and phosphate ionophore(I). The linear range of these sensor was log a = −6.0 to −2.6. Dihydrogen phosphate-selective optode sensors of optimized composition are fabricated in microsphere format and preliminary measurements in diluted sheep blood samples are presented.  相似文献   

19.
The aim of the present study was to develop a fast, sensitive and reliable method for rapid screening of cephalosporin injectable dosage forms namely ceftazidime and ceftizoxime to the detection of counterfeit and substandard drugs that might be illegally commercialized. Ceftazidime, ceftizoxime and cefixime (IS) were separated in a X-Terra RP-18 column (250 × 4.60 mm ID × 5 ??) and DAD detector set at 290 and 260 nm. The mobile phase consisted of a mixture of methanol:water 20:80 (v/v) at a flow rate of 1.0 mL min?1. Additionally, in order to find the optimum pH value of separation the pK a values of studied compounds were determined by using two different methodologies. Aqueous pK a values of studied compounds have been determined by UV-spectrophotometry and liquid chromatography were used for the determination and direct characterization of the dissociation constants by using the dependence of the capacity factor on the pH of the mobile phase in 20% (v/v) methanol?Cwater binary mixture in which separation was performed. The pH of the mobile phase was adjusted with 25 mM H3PO4 to 3.2. The method was shown to be linear, sensible, accurate, and reproducible over the range of analysis and it can be used to pharmaceutical formulations containing a single active ingredient within a short analysis time.  相似文献   

20.
Acidity constant values of benzoic acid (BA)-modified platinum electrode (Pt-BA) and p-aminobenzoic acid (pABA)-modified platinum electrode (Pt-NHBA) surfaces were determined using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and contact angle measurements (CAM). Diazonium tetrafluoroborate salt reduction and pABA oxidation reactions were used to prepare (Pt-BA) and (Pt-NHBA) surfaces, respectively. Both surfaces exhibited pH dependence with [Fe(CN)6]3?/4? redox probe solutions at different pH; this allowed us to estimate the surface pK a values. Acidity constants for Pt-BA surface were found to be pK a (3.09 ± 0.25), (4.89 ± 0.11), and (3.91 ± 0.54) by CV, EIS, and CAM techniques, respectively, while the values for Pt-NHBA surface were pK a (3.16 ± 0.45), (4.24 ± 0.40), and (5.64 ± 0.12). The Pt-BA surface pK a values were lower in CV and CAM measurements relative to the bulk solution of BA, while a higher value was observed in EIS for Pt-BA surface. The pK a values determined for Pt-NHBA surface via both CV and EIS were lower than the bulk value; however, the result obtained from CAM was one unit higher than pK a of bulk pABA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号