首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
A detailed study of the pH‐ and sugar‐responsive behavior of poly(3‐acrylamidophenylboronic acid pinacol ester)‐b‐poly(N,N‐dimethylacrylamide) (PAPBAE‐b‐PDMA) block copolymers is presented. Reversible addition‐fragmentation chain transfer (RAFT) polymerization of the pinacol ester of 3‐acrylamidophenylboronic acid resulted in homopolymers with molecular weights between 12,000 and 37,000 g/mol. The resulting homopolymers were employed as macro‐chain transfer agents during the polymerization of N,N‐dimethylacrylamide (DMA). Successful chain extension and removal of the pinacol protecting groups to yield poly(3‐acrylamidophenylboronic acid)‐b‐PDMA (PAPBA‐b‐PDMA) with free boronic acid moieties resulted in pH‐ and sugar‐responsive block copolymers that were subsequently investigated for their behavior in aqueous solution. The PAPBA‐b‐PDMA block copolymers were capable of solution self‐assembly due to the PAPBA block being water‐insoluble below its pKa. The resulting aggregates were demonstrated to solubilize and release model hydrophobic compounds, as demonstrated by fluorescence studies. Dissociation of the aggregates was induced by raising the pH above the pKa of the boronic acid residues or by adding sugars capable of forming boronate esters. Aggregate size, dissociation kinetics, and the effect of various sugars were considered. The critical sugar concentration needed to induce aggregate dissociation was tuned by incorporation of hydrophilic DMA units within the PAPBA responsive segment to yield PDMA‐b‐poly(3‐acrylamidophenylboronic acid‐co‐DMA) block copolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
3-Aminophenylboronic acid (APBA) was used for construction of affinity mass sensors for determination of saccharides and glycated hemoglobin using complexation reaction with diol groups. Two approaches were tested for the bioligand layer fabrication—incorporation of APBA inside a thicker matrix and immobilization as a self-assembled monolayer, respectively. The direct affinity sensor with APBA embeded in the structure of glutaraldehyde-crosslinked bovine serum albumine provided linear response to mono- and dissacharides in the range from 0.1 to 15.0 mg/ml. This biosensor was also used for kinetic analysis of the interaction of boronic acid with diols; the values of association and dissociation constants were determined. The sensors with a monolayer of boronic groups were better suited for binding of glycated hemoglobin, probably due to improved steric access to the ligand.  相似文献   

3.
We have successfully fabricated a phenylboronic acid self-assembled layer on glassy carbon electrodes (GCE), where 3-aminophenylboronic acid (APBA) is covalently bound to the electrochemical pretreated GCE surface with glutaraldehyde linkage. The specific binding of glycoprotein peroxidase with the self-assembled layer has been studied using horseradish peroxidase (HRP) as a model glycoprotein. Cyclic voltammetric, electrochemical impedance studies and photometric activity assays show that the affinity interaction of HRP with the APBA modified GCE surface includes specific and nonspecific bonding. The specific binding is attributed to the boronic acid–diols interaction where the boronic acid specifically binds the glycosylation sites of the HRP. This specific binding is reversible and can be split by sorbitol and glucose or released in an acidic buffer. The catalytic current of the HRP-loaded electrode, due to the catalytic oxidation of thionine in the presence of hydrogen peroxide, is proportional to HRP concentrations of the incubation solution. This work offers a new way to build novel sensors by specific binding of glycoproteins to a boronic acid self-assembled layer for determination of glycated proteins.  相似文献   

4.
Dopamine being a neurotransmitter and chemical messenger plays a vivacious role in a number of significant medical conditions like Parkinson’s disease, Attention Deficit Hyperactivity Disorder, Schizophrenia, and drug addiction. As turn-on sensors have a superior level of selectivity than fluorescence quenching based sensors, we developed a fluorescence retrieval strategy for dopamine sensing. Here, highly fluorescent amino phenyl boronic acid (APBA)?conjugated gold nanocluster (Au?BSA?APBA probe) has been synthesised from bovine serum albumin?protected gold nanocluster (Au?BSA NCs). Boronic acid forms boronate ester with disaccharides such as lactose due to its affinity to polyols. Hence fluorescence of Au?BSA?APBA probe is quenched when it binds with lactose molecules through boronate ester formation. The fluorescence of Au?BSA?APBA?lactose system can be retrieved (turn-on) with dopamine by the competitive displacement of lactose from the probe surface which suggests the higher affinity of boronic acid to the catechol group of dopamine. Furthermore, real samples spiked with dopamine including human serum and urine were analysed using this turn-on sensor and showed excellent recovery percentage. The developed fluorescent sensor offered high selectivity for dopamine over other catecholamines and aminoacids with detection limit as low as 0.7 μM.  相似文献   

5.
The polymerisation of 3-aminophenylboronic acid (APBA) in aqueous environment has been used for the open tubular modification of capillary electrophoresis (CE) capillaries. Being poly-APBA endowed with boronic acid, aromatic rings and secondary amines groups, it posses a variety of functional groups affecting selectivity. Diastereoisomers (e.g. ascorbic and isoascorbic acid) and proteins (e.g. haemoglobins) were successfully separated onto poly-APBA column, by means of a combination of electrophoresis and open tubular electrochromatography. The mechanism of selection was investigated: results indicate an interplay between enhancing or silencing the contribution of the protonable functionalities (amino groups, boronic acid). The properties of APBA polymer coating make it attractive for CE separation and for further application in affinity separations and chip technologies.  相似文献   

6.
A comparative study of the transesterification of five representative chiral and achiral boronic esters with various structurally modified diols was undertaken to qualitatively understand the factors influencing the relative stability of these boronic esters. Several factors such as chelation, conformation, steric bulk of the substituents, size of the heterocycle, and entropy influence the relative rate of transesterification as well as the stability of the boronic esters. Amongst these boronic esters, pinanediol phenylboronic ester was found to be the most stable boronic ester whereas DIPT boronic ester appeared to be thermodynamically the least stable one. The transesterification with sterically hindered diols was observed to be relatively slow, but afforded thermodynamically more stable boronic esters. Boronic esters derived from cis-cyclopentanediols and the bicyclo[2.2.1]heptane-exo,exo-2,3-diols are relatively more stable. This study not only presents the qualitative picture of relative stability of various boronic esters, but also provides helpful hints regarding the possible recovery of chiral auxiliaries. Many C 2-symmetric chiral auxiliaries, such as 2,3-butanediol, 2,4-pentanediol, DIPT, and cis-cyclohexane-1,2-diol, can be retrieved by simple transesterification of the corresponding boronic esters with commercial inexpensive diols, such as pinacol, 1,3-propanediol, and neopentyl glycol.  相似文献   

7.
Novel amphiphilic star‐block copolymers, star poly(caprolactone)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] and poly(caprolactone)‐block‐poly(methacrylic acid), with hyperbranched poly(2‐hydroxyethyl methacrylate) (PHEMA–OH) as a core moiety were synthesized and characterized. The star‐block copolymers were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). First, hyperbranched PHEMA–OH with 18 hydroxyl end groups on average was used as an initiator for the ring‐opening polymerization of ε‐caprolactone to produce PHEMA–PCL star homopolymers [PHEMA = poly(2‐hydroxyethyl methacrylate); PCL = poly(caprolactone)]. Next, the hydroxyl end groups of PHEMA–PCL were converted to 2‐bromoesters, and this gave rise to macroinitiator PHEMA–PCL–Br for ATRP. Then, 2‐dimethylaminoethyl methacrylate or tert‐butyl methacrylate was polymerized from the macroinitiators, and this afforded the star‐block copolymers PHEMA–PCL–PDMA [PDMA = poly(2‐dimethylaminoethyl methacrylate)] and PHEMA–PCL–PtBMA [PtBMA = poly(tert‐butyl methacrylate)]. Characterization by gel permeation chromatography and nuclear magnetic resonance confirmed the expected molecular structure. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl methacrylate) blocks gave the star‐block copolymer PHEMA–PCL–PMAA [PMAA = poly(methacrylic acid)]. These amphiphilic star‐block copolymers could self‐assemble into spherical micelles, as characterized by dynamic light scattering and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6534–6544, 2005  相似文献   

8.
Summary. A comparative study of the transesterification of five representative chiral and achiral boronic esters with various structurally modified diols was undertaken to qualitatively understand the factors influencing the relative stability of these boronic esters. Several factors such as chelation, conformation, steric bulk of the substituents, size of the heterocycle, and entropy influence the relative rate of transesterification as well as the stability of the boronic esters. Amongst these boronic esters, pinanediol phenylboronic ester was found to be the most stable boronic ester whereas DIPT boronic ester appeared to be thermodynamically the least stable one. The transesterification with sterically hindered diols was observed to be relatively slow, but afforded thermodynamically more stable boronic esters. Boronic esters derived from cis-cyclopentanediols and the bicyclo[2.2.1]heptane-exo,exo-2,3-diols are relatively more stable. This study not only presents the qualitative picture of relative stability of various boronic esters, but also provides helpful hints regarding the possible recovery of chiral auxiliaries. Many C 2-symmetric chiral auxiliaries, such as 2,3-butanediol, 2,4-pentanediol, DIPT, and cis-cyclohexane-1,2-diol, can be retrieved by simple transesterification of the corresponding boronic esters with commercial inexpensive diols, such as pinacol, 1,3-propanediol, and neopentyl glycol. This paper is dedicated to the memory of my mentor, the late Professor Herbert C. Brown (1912–2004). Professor Herbert C. Brown deceased on December 19, 2004. The work described herein was carried out at Purdue University during my stay as a post-doctoral research associate  相似文献   

9.
The synthesis and spectroscopic characterization of a new family of amphiphilic multiblock and triblock copolymers is described. The synthetic methodology rests on the preparation of telechelic multifunctional and difunctional chain transfer agents easily available in two synthetic steps from commercially available polydimethylsiloxane‐containing starting materials. Telechelic polymers thus synthesized are used as macromolecular chain transfer agents in the reversible addition fragmentation chain transfer (RAFT) polymerization of N,N‐dimethylacrylamide (DMA) enabling the synthesis of (AB)n‐type multiblock and ABA‐type triblock copolymers of varying compositions possessing monomodal molecular weight distribution. (AB)n multiblock copolymers [(PDMA‐b‐PDMS)n] were prepared with between 52 and 95 wt % poly(dimethylacrylamide) with number average molecular weights (Mn) between 14,000 and 86,000 (polydispersities of 1.20–2.30). On the other hand, ABA block copolymers with DMA led to amphiphilic block copolymers (PDMA‐b‐PDMS‐b‐PDMA) with Mn values between 9000 and 44,000 (polydispersities of 1.24–1.62). © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7033–7048, 2008  相似文献   

10.
Zhang X  Wu Y  Tu Y  Liu S 《The Analyst》2008,133(4):485-492
A reusable amperometric immunosensor based on the reversible boronic acid-sugar interaction is proposed. The immunosensor was prepared by self-assembling a thiol-mixed monolayer comprised of conjugates of 3-aminophenylboronic acid with 11-mercaptoundecanoic acid (APBA-MUA) and 11-mercapto-1-undecanol (MU) on gold. The resulting boronic acid coating layer can specifically bind with the glycoprotein antibody, enzyme conjugated carcinoembryonic antibody (HRP-anti-CEA). Voltammetric and electrochemical impedance spectroscopic (EIS) studies and surface plasmon resonance (SPR) measurements show that the binding of HRP-anti-CEA to the APBA interface is reversible and the HRP-anti-CEA can be removed with an acidic buffer or a solution containing sorbitol. The bound enzyme-conjugated antibody can retain its enzyme catalytic activity to the reduction of hydrogen peroxide (H(2)O(2)) and its immunoactivity while binding with CEA to form an immunocomplex. After the formation of the immunocomplex, the access of the active center of HRP to thionine was partially inhibited. This leads to a linear decrease in the electrocatalytic response of HRP-anti-CEA-modified electrode over a CEA concentration range of 2.5 to 40.0 ng mL(-1). After monitoring the immunoreaction signals, the immunocomplex can be easily removed from the APBA interface with a regeneration solution. This regenerated APBA interface can rebound with HRP-anti-CEA and be recognized by the antigen, through which a reusable immunosensor with an RSD of 7.1% for four cycles can be obtained. Under optimal conditions, the detection limit for the CEA immunoassay is 1.1 ng mL(-1), at three times background noise. Serum CEA determination results, obtained with the proposed method, shows that the immunosensor has an acceptable accuracy.  相似文献   

11.
Jun Yan  Susan Deeter 《Tetrahedron》2004,60(49):11205-11209
In our continuing efforts into designing boronic acid-based sensors that recognize cell-surface carbohydrates, it has been necessary to examine various factors that affect the binding affinity between a boronic acid moiety and a diol. The current prevailing view is that the strongest boronic acid/diol complexes are generated by a combination of high solution pH and a low boronic acid pKa. However, there has never been a systematic examination of the relationship among the binding constants, boronic acid pKa, and the pH of the solution. Herein we report our findings with a series of 25 arylboronic acids with various substituents and their binding affinities with diols. We have found that (1) the relationship between the pKa of monosubstituted phenylboronic acid and its substituents can be described using a Hammet plot; (2) the optimal pH for binding is not always above the pKa of the boronic acid, and is affected by the pKa values of the boronic acid and the diol, and other unknown factors; and (3) the general belief that boronic acids with lower pKa values show greater binding affinities for diols is not always true.  相似文献   

12.
1,2‐Bis(boronic esters), derived from the enantioselective diboration of terminal alkenes, can be selectively homologated at the primary boronic ester by using enantioenriched primary/secondary lithiated carbamates or benzoates to give 1,3‐bis(boronic esters), which can be subsequently oxidized to the corresponding secondary‐secondary and secondary‐tertiary 1,3‐diols with full stereocontrol. The transformation was applied to a concise total synthesis of the 14‐membered macrolactone, Sch 725674. The nine‐step synthetic route also features a novel desymmetrizing enantioselective diboration of a divinyl carbinol derivative and high‐yielding late‐stage cross‐metathesis and Yamaguchi macrolactonization reactions.  相似文献   

13.
Diblock copolymers comprising a highly biocompatible poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) block and a poly(2-(dimethylamino)ethyl methacrylate) (PDMA) block were evaluated for the synthesis of sterically stabilized gold nanoparticles in aqueous solution. The PDMA block becomes partially protonated on addition of HAuCl4, and the remaining nonprotonated tertiary amine groups reduce the AuCl4- counterion to zerovalent gold in situ. This approach results in the adsorption of the PDMA block onto the gold nanoparticle surface while the PMPC chains serve as a stabilizing block, producing highly biocompatible gold sols in aqueous solution at ambient temperature without any external reducing agent. The size and shape of gold nanoparticles could be readily controlled by tuning synthesis parameters such as the block composition and the relative and absolute concentrations of the PMPC-PDMA diblock copolymer and HAuCl4. These highly biocompatible gold sols have potential biomedical applications.  相似文献   

14.
Current study is focused on the synthesis of three novel diblock copolymers poly(2-methacryloyloxy)ethyl ferrocene carboxylate-b-polymethyl vinyl amido phenyl boronic acid, poly(2-methacryloyloxy)ethyl ferrocene carboxylate-b-poly vinylamido phenyl boronic acid and poly(2-methacryloyloxy)ethyl ferrocene carboxylate-b-polystyrene boronic acid using S-methoxycarbonylphenylmethyl dithiobenzoate as reversible addition–fragmentation chain transfer polymerization agent. The synthesized block copolymers were characterized by gel permeation chromatography, fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, dynamic light scattering, scanning electron microscopy and transmission electron microscopy. Detailed micellization behaviour of poly(2-methacryloyloxy)ethyl ferrocene carboxylate-b-polymethyl vinyl amido phenyl boronic acid (in binary organic solvents mixture and aqueous solution) was studied. Comparative studies of micellization showed that the larger aggregates were obtained in binary organic solvents system than during dialysis in aqueous medium. The redox responsive behaviour of poly(2-methacryloyloxy)ethyl ferrocene carboxylate-b-polymethyl vinyl amido phenyl boronic acid was investigated by water soluble oxidizing (Ammonium cerium nitrate) and reducing (Sodium hydrogen sulphite) agents. Glucose binding/sensing properties of poly(2-methacryloyloxy)ethyl ferrocene carboxylate-b-polymethyl vinyl amido phenyl boronic acid were also explored by micellization. It was found that the increase in polarity and swelling of poly(2-methacryloyloxy)ethyl ferrocene carboxylate-b-polymethyl vinyl amidophenyl boronic acid micelles was due to the redox behaviour of ferrocene, while binding of glucose with boronic acids hydroxyls appears as unimers or small aggregates.  相似文献   

15.
It is possible to synthesize α-ω diacid PVC sequences by direct ozonization of the polymer, but their thermal stability is low because peroxides are introduced simultaneously in the polymer backbone. Also they cannot be used to prepare block copolymers by polycondensation at temperature above 100°. They are reactive enough to be transformed to α-ω acid chlorides which can be condensed with diols, diamines and bisphenol A to give block copolymers. Triethylamine acts as catalyst but also as HCl acceptor and favours high molecular weight formation. The α-ω acid chlorides can be hydroxylated and polycondensed with diphenylmethane diisocyanate. The thermal stability of these block copolymers is satisfactory if the peroxides are previously reduced.  相似文献   

16.
A novel method for the indirect electrochemical determination of ribavirin based on boronic acid-diol recognition was developed using the platform as the sensing element. The device was constructed using a 3-aminophenylboronic acid (APBA)-electrochemically reduced graphene oxide (ERGO) modified electrode. When the electrode was immersed in a solution of ribavirin, complexation of boronic acid groups of APBA with ribavirin occurred at the surface of the electrode and simultaneously caused steric hindrance, resulting in a current decrease because the ferricyanide redox probe was unable access the surface. Under the optimized conditions, a linear relationship was obtained between the relative change in current (%Δi) of [Fe(CN)6]3?/4?and the concentration of ribavirin at levels from 10.0 to 7.50?×?102?ng mL?1. The proposed electrochemical sensor performed with acceptable sensitivity and reproducibility and was successfully used to determine the content of ribavirin in an injection with satisfactory results.  相似文献   

17.
Relative rates of reaction of the achiral cyclic phenylboronic ester 2-(phenyl)-1,3,2-dioxaborolane with a wide variety of structurally modified diols, have been studied to understand the factors influencing the relative stabilities of boronic esters. It is found that the alkyl substituents on the α-carbons of diols slow down the transesterification, but produce thermodynamically more stable boronic ester. Six-membered boronic esters are thermodynamically more stable than their corresponding five-membered analogs. Amongst cyclic 1,2-diols, cis-1,2-cyclopentanediol displaces ethylene glycol instantaneously whereas trans-1,2-cyclopentanediol is totally unreactive, which suggests that the cis-stereochemistry of the 1,2-diol is a prerequisite for transesterification. Among the 1,5-diols, diethanolamine displaces ethylene glycol quite rapidly forming a more stable bicyclic chelate in which nitrogen is attached to boron by a coordinating bond (as evident by 11B NMR spectroscopy). The oxygen atom of di(ethylene glycol) and the sulfur atom of 2,2′-thiodiethanol do not assist in displacing the ethylene glycol from their boronic esters.  相似文献   

18.
Novel sugar-responsive block copolymers were prepared by RAFT block copolymerization of unprotected boronic acid monomers, providing a direct route to supramolecular assemblies that dissociate upon the addition of glucose.  相似文献   

19.
Synthetic receptors for diols that incorporate boronic acid motifs have been developed as new sensors and separation tools. Utilizing the reversible interactions of diols with boronic acids to form boronic esters under new binding regimes has provided new hydrogel constructs that have found use as dye‐displacement sensors and electrophoretic separation tools; similarly, molecular boronic‐acid‐containing chemosensors were constructed that offer applications in the sensing of diols. This review provides a somewhat‐personal perspective of developments in boronic‐acid‐mediated sensing and separation, placed in the context of the seminal works of others in the area, as well as offering a concise summary of the contributions of the co‐authors in the area. DOI 10.1002/tcr.201200006  相似文献   

20.
A series of well‐defined, fluorinated diblock copolymers, poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,2‐trifluoroethyl methacrylate) (PDMA‐b‐PTFMA), poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,3,4,4,4‐hexafluorobutyl methacrylate) (PDMA‐b‐PHFMA), and poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,3,3,4,4,5,5‐octafluoropentyl methacrylate) (PDMA‐b‐POFMA), have been synthesized successfully via oxyanion‐initiated polymerization. Potassium benzyl alcoholate (BzO?K+) was used to initiate DMA monomer to yield the first block PDMA. If not quenched, the first living chain could be subsequently used to initiate a feed F‐monomer (such as TFMA, HFMA, or OFMA) to produce diblock copolymers containing different poly(fluoroalkyl methacrylate) moieties. The composition and chemical structure of these fluorinated copolymers were confirmed by 1H NMR, 19F NMR spectroscopy, and gel permeation chromatography (GPC) techniques. The solution behaviors of these copolymers containing (tri‐, hexa‐, or octa‐ F‐atom)FMA were investigated by the measurements of surface tension, dynamic light scattering (DLS), and UV spectrophotometer. The results indicate that these fluorinated copolymers possess relatively high surface activity, especially at neutral media. Moreover, the DLS and UV measurements showed that these fluorinated diblock copolymers possess distinct pH/temperature‐responsive properties, depending not only on the PDMA segment but also on the fluoroalkyl structure of the FMA units. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2702–2712, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号