首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1 INTRODUCTION During the past decade, a series of organic-inor- ganic hybrid compounds based on metal halide units have been prepared and studied[1]. The combination of organic and inorganic components at the mole- cular level affords us the opportunity to design new hybrid materials and modulate the properties of components[2]. As a result, some interesting proper- ties, such as non-linear optical[3], interesting magne- tic[4], efficient luminescence[2], ideal thermal and mechanical sta…  相似文献   

2.
[Mo_5P_2O_(23)]~(6-)[(CH_3)_2NH_2]_5~(5+)[H_3O]~+·1/2DMF·1/2H_2O(DMF=(CH_3)_2NC-HO)(M_r=1204.67)的晶体属三斜晶系,空间群P,晶胞参数a=16.438(6);b=22.22(1);c=11.325(5),α=104.25(4);β=108.97(3);γ=97.68(4)°,V=3688(3),Z=4,D_c=2.17gcm~(-1),R=0.056,R_w=0.074,晶胞中每个不对称单元含有两个[Mo_5P_2O_(23)]~(6-)[(CH_3)_2NH_2]_5~(5+)[H_3O]~+·1/2DMF·1/2H_2O,阴离子[Mo_5P_2O_(23)]~(6-)中的Mo、P原子成一个畸变五角双锥构型。有一个阴离子的所有原子(Mo、P、O)位置完全确定,而另一个阴离子有一个磷酸根的三个氧原子位置出现二重位置统计分布。化合物的阳离子为二甲胺阳离子和水合氢离子。  相似文献   

3.
[reaction: see text] An efficient route to deoxyadenosine derivatives labeled on both the amino group and nitrogen 1 is uncovered. First, 3',5'-di-O-acetyl-2'-deoxy-1-(2-nitrobenzenesulfonyl)inosine (2a) and only 1.1 equiv of (15)NH4Cl are used for labeling position 1 (1a) through the isolation of the open intermediate and its cyclization with DBU in anhydrous CH3CN. Inosine 1a is then converted to [N,1-(15)N2]-3',5'-di-O-acetyl-N6-benzoyl-2'-deoxyadenosine (5a, the precursor of 6a) via a Pd/dppf-catalyzed chloride-to-benzamide replacement, by using again only 1.1 equiv of the labeling source.  相似文献   

4.
Infrared spectra of mass-selected F- -(CH4)n (n = 1-8) clusters are recorded in the CH stretching region (2500-3100 cm-1). Spectra for the n = 1-3 clusters are interpreted with the aid of ab initio calculations at the MP2/6-311++G(2df 2p) level, which suggest that the CH4 ligands bind to F- by equivalent, linear hydrogen bonds. Anharmonic frequencies for CH4 and F--CH4 are determined using the vibrational self-consistent field method with second-order perturbation theory correction. The n = 1 complex is predicted to have a C3v structure with a single CH group hydrogen bonded to F-. Its spectrum exhibits a parallel band associated with a stretching vibration of the hydrogen-bonded CH group that is red-shifted by 380 cm-1 from the nu1 band of free CH4 and a perpendicular band associated with the asymmetric stretching motion of the nonbonded CH groups, slightly red-shifted from the nu3 band of free CH4. As n increases, additional vibrational bands appear as a result of Fermi resonances between the hydrogen-bonded CH stretching vibrational mode and the 2nu4 overtone and nu2+nu4 combination levels of the methane solvent molecules. For clusters with n < or = 8, it appears that the CH4 molecules are accommodated in the first solvation shell, each being attached to the F- anion by equivalent hydrogen bonds.  相似文献   

5.
The oxidation of L-cysteine by the outer-sphere oxidants [Fe(bpy)2(CN)2]+ and [Fe(bpy)(CN)4]- in anaerobic aqueous solution is highly susceptible to catalysis by trace amounts of copper ions. This copper catalysis is effectively inhibited with the addition of 1.0 mM dipicolinic acid for the reduction of [Fe(bpy)2(CN)2]+ and is completely suppressed with the addition of 5.0 mM EDTA (pH<9.00), 10.0 mM EDTA (9.010.0) for the reduction of [Fe(bpy)(CN)4]-. 1H NMR and UV-vis spectra show that the products of the direct (uncatalyzed) reactions are the corresponding Fe(II) complexes and, when no radical scavengers are present, L-cystine, both being formed quantitatively. The two reactions display mild kinetic inhibition by Fe(II), and the inhibition can be suppressed by the free radical scavenger PBN (N-tert-butyl-alpha-phenylnitrone). At 25 degrees C and micro=0.1 M and under conditions where inhibition by Fe(II) is insignificant, the general rate law is -d[Fe(III)]/dt=k[cysteine]tot[Fe(III)], with k={k2Ka1[H+]2+k3Ka1Ka2[H+]+k4Ka1Ka2Ka3{/}[H+]3+Ka1[H+]2+Ka1Ka2[H+]+Ka1Ka2Ka3}, where Ka1, Ka2, and Ka3 are the successive acid dissociation constants of HSCH2CH(NH3+)CO2H. For [Fe(bpy)2(CN)2]+, the kinetics over the pH range of 3-7.9 yields k2=3.4+/-0.6 M(-1) s(-1) and k3=(1.18+/-0.02)x10(6) M(-1) s(-1) (k4 is insignificant in the fitting). For [Fe(bpy)(CN)4]- over the pH range of 6.1-11.9, the rate constants are k3=(2.13+/-0.08)x10(3) M(-1) s(-1) and k4=(1.01+/-0.06)x10(4) M(-1) s(-1) (k2 is insignificant in the fitting). All three terms in the rate law are assigned to rate-limiting electron-transfer reactions in which various thiolate forms of cysteine are reactive. Applying Marcus theory, the self-exchange rate constant of the *SCH2CH(NH2)CO2-/-SCH2CH(NH2)CO2- redox couple was obtained from the oxidation of L-cysteine by [Fe(bpy)(CN)4]-, with k11=4x10(5) M(-1) s(-1). The self-exchange rate constant of the *SCH2CH(NH3+)CO2-/-SCH2CH(NH3+)CO2- redox couple was similarly obtained from the rates with both Fe(III) oxidants, a value of 6x10(6) M(-1) s(-1) for k11 being derived. Both self-exchange rate constants are quite large as is to be expected from the minimal rearrangement that follows conversion of a thiolate to a thiyl radical, and the somewhat lower self-exchange rate constant for the dianionic form of cysteine is ascribed to electrostatic repulsion.  相似文献   

6.
标题的化合物晶体属斜方晶系,空间群为Pcnb,晶胞参数为:a=12.975(26),b=16.342(28),c=17.582(48),Z=4。晶体结构用直接法,三维Patterson函数和差值Fourier方法解出,经全矩阵最小二乘法修正,对1674个独立衍射点[I≥3σ(I)],最后偏离因子R=0.054。 该化合物属于离子型,阴离子和阳离子分别以六面体和四面体配位。  相似文献   

7.
Replacement of a CH in (CH3)4N+ by a CO2- group raises rho from 0.012 to 0.034 for symmetric N-C stretching and from ca. 0.026 to 0.031 for all-in-phase methyl C-H stretching. rho for antisymmetric C-H stretching and CH3 bending remains in the 0.73-0.75 range. No significant effect on rho attributable to the failure of solvation sheath symmetry to match the symmetry of the solute molecule is seen either near rho=0 or near p=3/4. The drastic change in charge distribution on going from cation to zwitterion, too, does not cause a major change near rho=0. Corroborative evidence of weakness of interaction between most surrounding D2O molecules and the Me3N+ portion of the zwitterion, derived from the O-D stretching region of the Raman spectrum, and implying the absence of symmetry in the solvation sheath, is discussed in Appendix A.  相似文献   

8.
FTIR and single crystal Raman spectra of (CH3)2NH2Al(SO4)2 x 6H2O have been recorded at 300 and 90 K and analysed. The shifting of nu1 mode to higher wavenumber and its appearance in Bg species contributing to the alpha(xz) and alpha(yz) polarizability tensor components indicate the distortion of SO4 tetrahedra. The presence of nu1 and nu2 modes in the IR spectrum and the lifting of degeneracies of nu2, nu3, and nu4 modes are attributed to the lowering of the symmetry of the SO4(2-) ion. Coincidence of the IR and Raman bands for different modes suggest that DMA+ ion is orientationally disordered. One of the H atoms of the NH2 group of the DMA+ ion forms moderate hydrogen bonds with the SO4(2-) anion. Al(H2O)6(3+) ion is also distorted in the crystal. The shifting of the stretching modes to lower wavenumbers and the bending mode to higher wavenumber suggest that H2O molecules form strong hydrogen bonds with SO4(2-) anion. The intensity enhancement and the narrowing of nu1SO4, deltaC2N and Al(H2O)6(3+) modes at 90 K confirm the settling down of the protons in the hydrogen bonds formed with H2O molecules and NH2 groups. This may be one of the reasons for the phase transition observed in the crystal.  相似文献   

9.
The infrared photodissociation spectra of [(CO 2) n (CH 3OH) m ] (-) ( n = 1-4, m = 1, 2) are measured in the 2700-3700 cm (-1) range. The observed spectra consist of an intense broad band characteristic of hydrogen-bonded OH stretching vibrations at approximately 3300 cm (-1) and congested vibrational bands around 2900 cm (-1). No photofragment signal is observed for [(CO 2) 1,2(CH 3OH) 1] (-) in the spectral range studied. Ab initio calculations are performed at the MP2/6-311++G** level to obtain structural information such as optimized structures, stabilization energies, and vibrational frequencies of [(CO 2) n (CH 3OH) m ] (-). Comparison between the experimental and the theoretical results reveals the structural properties of [(CO 2) n (CH 3OH) m ] (-): (1) the incorporated CH 3OH interacts directly with either CO 2 (-) or C 2O 4 (-) core by forming an O-HO linkage; (2) the introduction of CH 3OH promotes charge localization in the clusters via the hydrogen-bond formation, resulting in the predominance of CO 2 (-).(CH 3OH) m (CO 2) n-1 isomeric forms over C 2O 4 (-).(CH 3OH) m (CO 2) n-2 ; (3) the hydroxyl group of CH 3OH provides an additional solvation cite for neutral CO 2 molecules.  相似文献   

10.
The structure of N,N-dimethylethylenediammonium pentachloroantimonate(III), [(CH3)2NH(CH2)2NH3][SbCl5], NNDP, was investigated at 100 and 15 K at ambient pressure, as well as at pressures up to 4.00 GPa at room temperature in the diamond-anvil cell. The stable structure at low temperatures and low pressures consists of isolated [SbCl5]2- anions and [(CH3)2NH(CH2)2NH3]2+ cations. The inorganic anions have a distorted square pyramidal geometry. They are arranged in linear chains parallel to the c axis. In contrast to the low-temperature studies, where no phase transition was detected, pressure induces a P2(1)/c --> P2(1)/n phase transition between 0.55 and 1.00 GPa, accompanied by a doubling of the a unit-cell parameter. This solid-solid transition results from changes in the electron configuration of the Sb(III) atom and formation of the Sb-Cl bridging bonds between inorganic polyhedra to form, at approximately 1.0 GPa, isolated [Sb2Cl10]4- units consisting of [SbCl6]3- octahedra and [SbCl5]2- square pyramids connected by a common corner. The intermolecular distances continuously decrease with further increase in pressure, and at approximately 3.1 GPa, zigzag [{SbCl5}n]2n- chains containing corner-sharing [SbCl6]3- octahedra are formed. The unit-cell volume of NNDP decreases by 18.15% between room pressure and 4.00 GPa. The linear distortions of the [SbCl5]2- and [SbCl6]3- polyhedra decrease with increasing pressure and decreasing temperature and indicate a reduction in the stereochemical activity of the lone electron pair on the Sb(III) atom.  相似文献   

11.
芳氧功能化咪唑盐L+Cl-(L=HO-4,6-di-tBu-C6H2-2-CH2{CH[iPrNCHCHN]})与无水EuCl3分别按照摩尔比为1∶2和1∶3反应成功合成相同芳氧功能化咪唑基五氯化铕L+2[EuCl5(THF)]2-,产物通过元素分析、IR、X-ray射线衍射表征。晶体结构数据表明此配合物属于单斜晶体,空间群P21/c,晶胞参数a=0.96664(8)nm,b=1.63312(12)nm,c=3.6850(3)nm,β=97.600(2)°,V=5.7662(8)nm3,Mr=1060.30,Z=4,Dc=1.221 Mg/m3,μ(MoKα)=1.36 mm-1,F(000)=2200。目标化合物是由阴离子[EuCl5(THF)]2-和[HO-4,6-di-tBu-C6H2-2-CH2{CH(iPrNCHCHN)}]2+通过氢键作用而形成的空间网状结构的晶体,阴离子中中心金属(Eu)是由五个氯原子以及来自THF的氧原子形成扭曲八面体的构型。  相似文献   

12.
The reaction of nBuSnCl3 and the sodium salt of 2-mercaptoethanol (1:1) in ethanol gave the compound Sn(nBu)(Cl)[(OCH2CH2S)2Sn(nBu)]2 (1). [(nBu)Sn(SCH2CH2O)SCH2CH2OH] (2) was initially isolated from the reaction of 1 with nBuMgCl as a rearrangement product but was also synthesized from nBuSn(O)OH and two molar equivalents of 2-mercaptoethanol. Both compounds were characterized by means of IR, 119Sn, 13C, and 1H NMR, FAB mass spectroscopy, and elemental analyses. The structures were determined by single-crystal X-ray diffraction. 1 crystallizes in the monoclinic Cc space group (a = 18.492(3) A, b = 17.329(2) A, c = 10.787(1) A, beta = 111.88(1) degrees, Z = 4), while 2 crystallizes in the orthorhombic Pbca space group (a = 14.458(2) A, b = 10.393(1) A, c = 16.479(2) A, Z = 8). 1 is a trimetallic Tin(IV) compound in which the central atom is in 6-fold coordination, while the two remaining tin atoms show 5-fold coordination. Both pentacoordinated tin atoms are bonded to a butyl group and to the oxygen and the sulfur atoms from two [OCH2CH2S]2- ligands forming two stannolanes, which are fused with the hexacoordinated tin atom forming a distannoxane system. This arrangement is quite different from previous ladder or staircase structures. NMR data point to maintenance of this structure in solution. 2 consists of [(nBu)Sn(SCH2CH2O)(SCH2CH2OH)] units, which are associated via intermolecular Sn-O interactions building up a dimer. The tin atom forms two "stannolane" units by interaction with [OCH2CH2S]2- and [HOCH2CH2S]- ligands.  相似文献   

13.
Hydrogen-bonded supramolecular cation assemblies of (NH4+/NH2-NH3+)(crown ether), where the crown ether is [12]crown-4, [15]crown-5, or [18]crown-6, were incorporated into electrically conducting [Ni(dmit)2] salts (dmit2- = 2-thioxo-1,3-dithiole-4,5-dithiolate). (NH4+)([12]crown-4)[Ni(dmit)2]3(CH3CN)2 had a pyramidal shape, while ionic channels were observed in (NH4+)(0.88)([15]crown-5)[Ni(dmit)(2)]2 and (NH4+)(0.70)([18]crown-6)[Ni(dmit)(2)]2. Both (NH4+)(0.88)([15]crown-5) and (NH4+)(0.70)([18]crown-6) contained regularly spaced [Ni(dmit)(2)] stacks formed by N-H.O hydrogen bonding between the oxygen atoms in crown ethers and the NH4+ ion. NH4+ occurred nonstoichiometrically; there were vacant ionic sites in the ionic channels. The ionic radius of NH4+ is larger than the cavity radius of [15]crown-5 and [18]crown-6. Therefore, NH4+ ions could not pass through the cavity and were distributed randomly in the ionic channels. The static disorder caused the conduction electrons to be randomly localized to the [Ni(dmit)2] stacks. Hydrazinium (NH2-NH3+) formed the supramolecular cations in (NH2-NH3+)([12]crown-4)2[Ni(dmit)2]4 and (NH2-NH3+)2([15]crown-5)3[Ni(dmit)2]6, possessing a sandwich and club-sandwich structure, respectively. To the best of our knowledge, these represent the first hydrazinium-crown ether assemblies to be identified in the solid. In the supramolecular cations, hydrogen bonding was detected between the ammonium or the amino protons of NH2-NH3+ and the oxygen atoms of crown ethers. The sandwich-type cations coexisted with the [Ni(dmit)2] dimer stacks. Although the assemblies were typically semiconducting, ferromagnetic interaction (Weiss temperature = +1 K) was detected in the case of (NH2-NH3+)2([15]crown-5)3[Ni(dmit)2]6. The (NH2-NH3+)0.8([18]crown-6)[Ni(dmit)2]2 and (NH4+)0.76([18]crown-6)[Ni(dmit)2]2 crystals were isomorphous. The large and flexible [18]crown-6 allowed for maintaining the same ionic channel structure through replacement of the NH4+ cation by NH2-NH3+.  相似文献   

14.
By the use of [1H,15N] heteronuclear single quantum coherence (HSQC) 2D NMR spectroscopy and electrochemical methods we have determined the hydrolysis profile of the bifunctional dinuclear platinum complex [[trans-PtCl(15NH3)2]2(mu-15NH2(CH2)(6)15NH2)]2+ (1,1/t,t (n = 6), 15N-1), the prototype of a novel class of potential antitumor complexes. Reported are estimates for the rate and equilibrium constants for the first and second aquation steps, together with the acid dissociation constant (pKa1 approximately pKa2 approximately pKa3). The equilibrium constants determined by NMR at 25 and 37 degrees C (I = 0.1 M) were similar, pK1 approximately pK2 = 3.9 +/- 0.2, and from a chloride release experiment at 37 degrees C the values were found to be pK1 = 4.11 +/- 0.05 and pK2 = 4.2 +/- 0.5. The forward and reverse rate constants for aquation determined from this chloride release experiment were k1 = (8.5 +/- 0.3) x 10(-5) s-1 and k-1 = 0.91 +/- 0.06 M-1 s-1, where the model assumed that all the liberated chloride came from 1. When the second aquation step was also taken into account, the rate constants were k1 = (7.9 +/- 0.2) x 10(-5) s-1, k-1 = 1.18 +/- 0.06 M-1 s-1, k2 = (10.6 +/- 3.0) x 10(-4) s-1, k-2 = 1.5 +/- 0.6 M-1 s-1. The rate constants compare favorably with other complexes with the [PtCl(am(m)ine)3]+ moiety and indicate that the equilibrium of all these species favors the chloro form. A pKa value of 5.62 was determined for the diaquated species [[trans-Pt(15NH3)2(H2O)]2(mu-15NH2(CH2)(6)15NH2)]4+ (3) using [1H,15N] HSQC NMR spectroscopy. The speciation profile of 1 and its hydrolysis products under physiological conditions is explored.  相似文献   

15.
The influence of the pH on the infrared spectrum of L-alanine has been analyzed by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The amino acid was precipitated from aqueous solutions and dried at 36.5 degrees C, in order to stabilize cationic L-alanine or alaninium [CH3CH(NH3(+))COOH] at pH 1, the zwitterionic form [CH3CH(NH3(+))COO(-)] at pH 6, and anionic L-alanine or alaninate [CH3CH(NH2)COO(-)] at pH 13. New insight on the specific inter and intramolecular interactions in the different forms of L-alanine was reached by a novel methodological approach: an infrared technique not used before to analyze solid amino acid samples (DRIFTS), in combination with a detailed analysis based on spectral deconvolution. The frequency ranges of interest include the carbonyl/carboxyl stretching and amine deformation modes and the OH/NH stretching modes. It was shown that intermolecular hydrogen bonds between the NH3(+) and COO(-) groups are predominant in the zwitterionic form, whereas in cationic L-alanine, H bonds between the COOH groups are responsible for the formation of dimers. In anionic L-alanine, only strong electrostatic interactions between the COO(-) groups and Na(+) ions are proposed, evidencing the relevant role of the counterion.  相似文献   

16.
The first structurally authenticated example of a hexadentate chelating tertiary phosphine in which all six donors are bound to a single metal centre is described. The multidentate ligand (RP*,RP*,RP*)- and (RP*,RP*,SP*)-CH3C(CH2PPhC6H4NH2-2)3 has been prepared in 80% yield via the reaction of five equivalents of sodium (2-aminophenyl)phenylphosphide (generated in situ from (2-aminophenyl)phenylphosphine and sodium in thf) with 1,1,1-tri(bromomethyl)ethane in thf. The diastereomeric mixture has been complexed to cobalt(III) and the resulting pair of complexes, viz. [Co{(RP*,RP*,RP*)-CH3C(CH2PPhC6H4NH2-2)3}]Cl3 and [CoCl{(RP*,RP*,SP*)-CH3C(CH2PPhC6H4NH2-2)3}]Cl2, separated by ion exchange chromatography. The structure of the former (as the corresponding hexafluorophosphate salt) has been confirmed by X-ray crystallography and clearly shows all six donors of the P3N3 ligand coordinated to a single cobalt(III) centre. The related hexadentate ligand with internal N donors and terminal diphenylphosphino groups, viz. CH3C(CH2NHC6H4PPh2-2)3, has also been synthesised, albeit in low yield, via the reaction of [Li(tmeda)][2-NHC6H4PPh2] (generated in situ from (2-aminophenyl)diphenylphosphine, n-butyllithium and tmeda in diethyl ether) with 1,1,1-tri(iodomethyl)ethane in thf. No formation of a P3N3 ligand has been observed when either Na[2-PPhC6H4NH2] or [Li(tmeda)][2-NHC6H4PPh2] is reacted with the related tripodal substrate 1,1,1-tris(tolyl-4-sulfonyloxymethyl)ethane in thf. Rather the P-methyloxetane (+/-)-[3-{(2-aminophenyl)phenylphosphinomethyl}]-3-methyloxetane and the sulfonamide 2-(4-CH3C6H4SO2)NHC6H4PPh2 and the corresponding N-methyloxetane [3-{(2-diphenylphosphinophenyl)aminomethyl}]-3-methyloxetane have been isolated from the respective reactions. The structure of the sulfonamide has been confirmed by an X-ray analysis of the platinum(II) complex trans-[PtCl(CH3){2-PPh2C6H4NH(SO2C6H4CH(3-4)}2].  相似文献   

17.
H-transfers by 4-, 5-, and 6-membered ring transition states to the pi-bonded methylene of CH3CH2CH2NH+=CH2 (1) are characterized by theory and compared with the corresponding transfers in cation radicals. Four-membered ring H-transfers converting 1 to CH3CH2CH=N+HCH3 (2) and CH3N+H=CH2 to CH2=NH+CH3 are high-energy processes involving rotation of the source and destination RHC= groups (R = H or C2H5) to near bisection by skeletal planes; migrating hydrogens move near these planes. The H-transfer 1 --> CH3C+HCH2NHCH3 (3) has a higher energy transition-state than 1 --> 2, in marked contrast to the corresponding relative energies of 4- and 5-membered ring H-transfers in cation-radicals. Six-membered ring H-transfer-dissociation (1 --> CH2=CH2 + CH2=N+HCH3) is a closed shell analog of the McLafferty rearrangement. It has a lower energy transition-state than either 1 --> 2 or 1 --> 3, but is still a much higher energy process than 6-membered ring H-transfers in aliphatic cation radicals. In contrast to the stepwise McLafferty rearrangement in cation radicals, H-transfer and CC bond breaking are highly synchronous in 1 --> CH3N+H=CH2 + CH2=CH2. H-transfers in propene elimination from 1 are ion-neutral complex-mediated: 1--> [CH3CH2CH2+ ---NH=CH2] --> [CH3C+HCH3 NH=CH2] --> CH3CH = CH2 + CH2=NH2+. Intrinsic reaction coordinate tracing demonstrated that a slight preference for H-transfer from the methyl containing the carbon from which CH2=NH is cleaved is due to CH2=NH passing nearer this methyl than the other on its way to abstracting H, i.e., some memory of the initial orientation of the partners accompanies this reaction.  相似文献   

18.
The gas-phase infrared spectra of discrete uranyl ([UO2]2+) complexes ligated with acetone and/or acetonitrile were used to evaluate systematic trends of ligation on the position of the O=U=O stretch and to enable rigorous comparison with the results of computational studies. Ionic uranyl complexes isolated in a Fourier transform ion cyclotron resonance mass spectrometer were fragmented via infrared multiphoton dissociation using a free electron laser scanned over the mid-IR wavelengths. The asymmetric O=U=O stretching frequency was measured at 1017 cm(-1) for [UO2(CH3COCH3)2]2+ and was systematically red shifted to 1000 and 988 cm(-1) by the addition of a third and fourth acetone ligand, respectively, which was consistent with increased donation of electron density to the uranium center in complexes with higher coordination number. The values generated computationally using LDA, B3LYP, and ZORA-PW91 were in good agreement with experimental measurements. In contrast to the uranyl frequency shifts, the carbonyl frequencies of the acetone ligands were progressively blue shifted as the number of ligands increased from two to four and approached that of free acetone. This observation was consistent with the formation of weaker noncovalent bonds between uranium and the carbonyl oxygen as the extent of ligation increases. Similar trends were observed for [UO2(CH3CN)n]2+ complexes, although the uranyl asymmetric stretching frequencies were greater than those measured for acetone complexes having equivalent coordination, which is consistent with the fact that acetonitrile is a weaker nucleophile than is acetone. This conclusion was confirmed by the uranyl stretching frequencies measured for mixed acetone/acetonitrile complexes, which showed that substitution of one acetone for one acetonitrile produced a modest red shift of 3-6 cm(-1).  相似文献   

19.
The reaction of Cu(ClO4)2.6-H2O and n-propylamine in methanol gives two high-nuclearity products of well-defined compositions. At amine concentrations greater than seven equivalents compared to copper ion concentration, the system fixes carbon dioxide from air to form the one-dimensional carbamate-bridged coordination polymer, {[Cu(mu2-O,O'-O2CNH(CH2)2CH3)(NH2(CH2)2CH3)3](ClO4)}n ({1-ClO4}n). Lower relative amine concentrations lead to the self-assembly of an octanuclear copper-amine-hydroxide cluster [Cu8(OH)10(NH2(CH2)2CH3)12]6+ (2). Both compounds exhibit unique structures: {1-ClO4}n is the first mu2-O,O'-mono-N-alkylcarbamate-linked coordination polymer and 2 is the largest copper-hydroxide-monodentate amine cluster identified to date. The crystal structures indicate that the size of the n-propyl group is probably crucial for directing the formation of these compounds. Magnetic susceptibility studies indicate very weak antiferromagnetic coupling for 1. The octanuclear cluster 2 displays slightly stronger net antiferromagnetic coupling, despite the presence of a number of Cu-O(H)-Cu angles below the value of about 97 degrees that would normally be expected to yield ferromagnetic coupling.  相似文献   

20.
In the Buchwald-Hartwig reaction between HIPTBr (HIPT = 3,5-(2,4,6-i-Pr3C6H2)2C6H3 = hexaisopropylterphenyl) and (H2NCH2CH2)3N, it is possible to obtain a 65% isolated yield of (HIPTNHCH2CH2)2NCH2CH2NH2. A second coupling then can be carried out to yield a variety of "hybrid" ligands, (HIPTNHCH2CH2)2NCH2CH2NHAr, where Ar = 3,5-Me2C6H3, 3,5-(CF3)2C6H3, 3,5-(MeO)2C6H3, 3,5-Me2NC5H3, 3,5-Ph2NC5H3, 2,4,6-i-Pr3C6H2, or 2,4,6-Me3C6H2. The hybrid ligands may be attached to Mo to yield [hybrid]MoCl species. From the monochloride species, a variety of other species such as [hybrid]MoN, {[hybrid]MoN2}Na, and {[hybrid]Mo(NH3)}+ can be prepared. [Hybrid]MoN2 species were prepared through oxidation of {[hybrid]MoN2}Na species with ZnCl2, but they could not be isolated. [Hybrid]Mo=N-NH species could be observed as a consequence of the protonation of {[hybrid]MoN2}- species, but they too could not be isolated as a consequence of a facile decomposition to yield dihydrogen and [hybrid]MoN2 species. Attempts to reduce dinitrogen catalytically led to little or no ammonia being formed from dinitrogen. The fact that no ammonia was formed from dinitrogen in the case of Ar = 3,5-Me2C6H3, 3,5-(CF3)2C6H3, or 3,5-(MeO)2C6H3 could be attributed to a rapid decomposition of intermediate [hybrid]Mo=N-NH species in the catalytic reaction, a decomposition that was shown in separate studies to be accelerated dramatically by 2,6-lutidine, the conjugate base of the acid employed in the attempted catalytic reduction. X-ray structures of [(HIPTNHCH2CH2)2NCH2CH2N{3,5-(CF3)2C6H3}]MoCl and [(HIPTNHCH2CH2)2NCH2CH2N(3,5-Me2C6H3)]MoN2}Na(THF)2 are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号