首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The infrared photodissociation spectra of [(CO(2))(n)(H(2)O)(m)](-) (n=1-4, m=1, 2) are measured in the 3000-3800 cm(-1) range. The [(CO(2))(n)(H(2)O)(1)](-) spectra are characterized by a sharp band around 3570 cm(-1) except for n=1; [(CO(2))(1)(H(2)O)(1)](-) does not photodissociate in the spectral range studied. The [(CO(2))(n)(H(2)O)(2)](-) (n=1, 2) species have similar spectral features with a broadband at approximately 3340 cm(-1). A drastic change in the spectral features is observed for [(CO(2))(3)(H(2)O)(2)](-), where sharp bands appear at 3224, 3321, 3364, 3438, and 3572 cm(-1). Ab initio calculations are performed at the MP2/6-311++G(**) level to provide structural information such as optimized structures, stabilization energies, and vibrational frequencies of the [(CO(2))(n)(H(2)O)(m)](-) species. Comparison between the experimental and theoretical results reveals rather size- and composition-specific hydration manner in [(CO(2))(n)(H(2)O)(m)](-): (1) the incorporated H(2)O is bonded to either CO(2) (-) or C(2)O(4) (-) through two equivalent OH...O hydrogen bonds to form a ring structure in [(CO(2))(n)(H(2)O)(1)](-); (2) two H(2)O molecules are independently bound to the O atoms of CO(2) (-) in [(CO(2))(n)(H(2)O)(2)](-) (n=1, 2); (3) a cyclic structure composed of CO(2) (-) and two H(2)O molecules is formed in [(CO(2))(3)(H(2)O)(2)](-).  相似文献   

2.
Infrared photodissociation spectra of Al(+)(CH(3)OH)(n) (n = 1-4) and Al(+)(CH(3)OH)(n)-Ar (n = 1-3) were measured in the OH stretching region, 3000-3800 cm(-1). For n = 1 and 2, sharp absorption bands were observed in the free OH stretching region, all of which were well reproduced by the spectra calculated for the solvated-type geometry with no hydrogen bond. For n = 3 and 4, there were broad vibrational bands in the energy region of hydrogen-bonded OH stretching vibrations, 3000-3500 cm(-1). Energies of possible isomers for the Al(+)(CH(3)OH)(3),4 ions with hydrogen bonds were calculated in order to assign these bands. It was found that the third and fourth methanol molecules form hydrogen bonds with methanol molecules in the first solvation shell, rather than a direct bonding with the Al(+) ion. For the Al(+)(CH(3)OH)(n) clusters with n = 1-4, we obtained no evidence of the insertion reaction, which occurs in Al(+)(H(2)O)(n). One possible explanation of the difference between these two systems is that the potential energy barriers between the solvated and inserted isomers in the Al(+)(CH(3)OH)(n) system is too high to form the inserted-type isomers.  相似文献   

3.
Infrared photodissociation (IRPD) spectra of carbon dioxide cluster ions, (CO(2))(n) (+) with n=3-8, are measured in the 1000-3800 cm(-1) region. IR bands assignable to solvent CO(2) molecules are observed at positions close to the vibrational frequencies of neutral CO(2) [1290 and 1400 cm(-1) (nu(1) and 2nu(2)), 2350 cm(-1) (nu(3)), and 3610 and 3713 cm(-1) (nu(1)+nu(3) and 2nu(2)+nu(3))]. The ion core in (CO(2))(n) (+) shows several IR bands in the 1200-1350, 2100-2200, and 3250-3500 cm(-1) regions. On the basis of previous IR studies in solid Ne and quantum chemical calculations, these bands are ascribed to the C(2)O(4) (+) ion, which has a semicovalent bond between the CO(2) components. The number of the bands and the bandwidth of the IRPD spectra drastically change with an increase in the cluster size up to n=6, which is ascribed to the symmetry change of (CO(2))(n) (+) by the solvation of CO(2) molecules and a full occupation of the first solvation shell at n=6.  相似文献   

4.
A new group of CO-releasing molecules, CO-RMs, based on cyclopentadienyl iron carbonyls have been identified. X-Ray structures have been determined for [(eta-C(5)H(4)CO(2)Me)Fe(CO)(2)X], X = Cl, Br, I, NO(3), CO(2)Me, [(eta-C(5)H(4)CO(2)Me)Fe(CO)(2)](2), [(eta-C(5)H(4)CO(2)CH(2)CH(2)OH)Fe(CO)(2)](2) and [(eta-C(5)H(4)CO(2)Me)Fe(CO)(3)][FeCl(4)]. Half-lives for CO release, (1)H, (13)C, and (17)OC NMR and IR spectra have been determined along with some biological data for these compounds, [(eta-C(5)H(4)CO(2)CH(2)CH(2)OH)Fe(CO)(3)](+) and [[eta-C(5)H(4)(CH(2))(n)CO(2)Me]Fe(CO)(3)](+), n = 1, 2. More specifically, cytotoxicity assays and inhibition of nitrite formation in stimulated RAW264.7 macrophages are reported for most of the compounds analyzed. [(eta-C(5)H(5))Fe(CO)(2)X], X = Cl, Br, I, were also examined for comparison. Correlations between the half-lives for CO release and spectroscopic parameters are found within each group of compounds, but not between the groups.  相似文献   

5.
We investigated IR spectra in the CH- and OH-stretching regions of size-selected methanol clusters, (CH(3)OH)(n) with n = 2-6, in a pulsed supersonic jet by using the IR-VUV (vacuum-ultraviolet) ionization technique. VUV emission at 118 nm served as the source of ionization in a time-of-flight mass spectrometer. The tunable IR laser emission served as a source of predissociation or excitation before ionization. The variations of intensity of protonated methanol cluster ions (CH(3)OH)(n)H(+) and CH(3)OH(+) and (CH(3)OH)(2)(+) were monitored as the IR laser light was tuned across the range 2650-3750 cm(-1). Careful processing of these action spectra based on photoionization efficiencies and the production and loss of each cluster due to photodissociation yielded IR spectra of the size-selected clusters. Spectra of methanol clusters in the OH region have been extensively investigated; our results are consistent with previous reports, except that the band near 3675 cm(-1) is identified as being associated with the proton acceptor of (CH(3)OH)(2). Spectra in the CH region are new. In the region 2800-3050 cm(-1), bands near 2845, 2956, and 3007 cm(-1) for CH(3)OH split into 2823, 2849, 2934, 2955, 2984, and 3006 cm(-1) for (CH(3)OH)(2) that correspond to proton donor and proton acceptor, indicating that the methanol dimer has a preferred open-chain structure. In contrast, for (CH(3)OH)(3), the splitting diminishes and the bands near 2837, 2954, and 2987 cm(-1) become narrower, indicating a preferred cyclic structure. Anharmonic vibrational wavenumbers predicted for the methanol open-chain dimer and the cyclic trimer with the B3LYP∕VPT2∕ANO1 level of theory are consistent with experimental results. For the tetramer and pentamer, the spectral pattern similar to that of the trimer but with greater widths was observed, indicating that the most stable structures are also cyclic.  相似文献   

6.
Infrared predissociation (IRPD) spectra of Li(+)(CH(4))(1)Ar(n), n = 1-6, clusters are reported in the C-H stretching region from 2800 to 3100 cm(-1). The Li(+) electric field perturbs CH(4) lifting its tetrahedral symmetry and gives rise to multiple IR active modes. The observed bands arise from the totally symmetric vibrational mode, v(1), and the triple degenerate vibrational mode, v(3). Each band is shifted to lower frequency relative to the unperturbed CH(4) values. As the number of argon atoms is increased, the C-H red shift becomes less pronounced until the bands are essentially unchanged from n = 5 to n = 6. For n = 6, additional vibrational features were observed which suggested the presence of an additional conformer. By monitoring different photodissociation loss channels (loss of three Ar or loss of CH(4)), one conformer was uniquely associated with the CH(4) loss channel, with two bands at 2914 and 3017 cm(-1), values nearly identical to the neutral CH(4) gas-phase v(1) and v(3) frequencies. With supporting ab initio calculations, the two conformers were identified, both with a first solvent shell size of six. The major conformer had CH(4) in the first shell, while the conformer exclusively present in the CH(4) loss channel had six argons in the first shell and CH(4) in the second shell. This conformer is +11.89 kJ/mol higher in energy than the minimum energy conformer at the MP2/aug-cc-pVDZ level. B3LYP/6-31+G* level vibrational frequencies and MP2/aug-cc-pVDZ level single-point binding energies, D(e) (kJ/mol), are reported to support the interpretation of the experimental data.  相似文献   

7.
The vibrational spectroscopy of (SO4(2-)).(H2O)n is studied by theoretical calculations for n=1-5, and the results are compared with experiments for n=3-5. The calculations use both ab initio MP2 and DFT/B3LYP potential energy surfaces. Both harmonic and anharmonic calculations are reported, the latter with the CC-VSCF method. The main findings are the following: (1) With one exception (H2O bending mode), the anharmonicity of the observed transitions, all in the experimental window of 540-1850 cm(-1), is negligible. The computed anharmonic coupling suggests that intramolecular vibrational redistribution does not play any role for the observed linewidths. (2) Comparison with experiment at the harmonic level of computed fundamental frequencies indicates that MP2 is significantly more accurate than DFT/B3LYP for these systems. (3) Strong anharmonic effects are, however, calculated for numerous transitions of these systems, which are outside the present observation window. These include fundamentals as well as combination modes. (4) Combination modes for the n=1 and n=2 clusters are computed. Several relatively strong combination transitions are predicted. These show strong anharmonic effects. (5) An interesting effect of the zero point energy (ZPE) on structure is found for (SO4(2-)).(H2O)(5): The global minimum of the potential energy corresponds to a C(s) structure, but with incorporation of ZPE the lowest energy structure is C2v, in accordance with experiment. (6) No stable structures were found for (OH-).(HSO4-).(H2O)n, for n相似文献   

8.
The hetero-metal clusters [h5-C5H4C(O)CH2CH2C(O)OCH3]FeCoM(m3-S)(CO)8 (M = Mo 1, M = W 2) were prepared by thermal reactions of FeCo2(CO)9(m3-S) with metal exchange reagent [h5-C5H4C(O)CH2CH2C(O)OCH3]M(CO)3Na (M = Mo or W) in THF. Cluster 1 reacted with 2,4-dinitrophenylhydrazine at room temperature to yield the cluster hydrazone derivative (m3-S)CoFeMo(CO)8[h5-C5H4C(NR)Me] [R = NHC6H3-2,4-(NO2)2] 3. All the compounds were characterized by elemental analyses, IR and NMR spectra. Cluster 1 was determined by single crystal X-ray diffraction. Crystal data: C18H11O11SCoFeMo, Mr = 646.05, triclinic, space group P_1, a = 8.148(2), b = 10.685(3), c = 13.410(4) ?, a = 100.077(5), b = 102.452(5), g = 91.108(6)°, V = 1120.4(5) ?3, Z = 2, Dc = 1.915 g/cm3, F(000) = 636, m = 2.071 mm-1, the final R = 0.0378 and wR = 0.0968 for 5074 observations with (I > 2s(I)).  相似文献   

9.
B3LYP-based density functional theory (DFT) calculations with effective core potentials (ECPs) (LANL2DZ) on M and 6-311+G(2d) all-electron basis function sets on C and O are used to interpret the symmetry characteristic vibrational absorption patterns of CO ligands in the "naked" coordinatively unsaturated transition-metal carbonyls M(CO)n-1 (M = Cr, Mo, and W; n = 4-6) observed by a time-resolved infrared absorption spectroscopy after the UV pulse laser photolysis of M(CO)6 in the gas phase. The UV photolysis results can be reasonably explained by the trends in the calculated bond dissociation enthalpies of M(CO)n-1-CO for group 6 metal carbonyls. M(CO)n-1 produced through one CO elimination from M(CO)n is found out to keep its parent skeleton, resulting in the structure with symmetry of C4v for M(CO)5, C2v for M(CO)4, and C3v for M(CO)3.  相似文献   

10.
Isolated cobalt-alcohol cluster anions containing n=1-4 cobalt and m=1-3 alcohol molecules (alcohol=methanol, ethanol, propanol) are produced in a supersonic beam by using a laser ablation source. By applying IR photodissociation spectroscopy vibrational spectra in the OH stretching region are obtained. Several structures in different spin states are discussed for the (n,m) clusters. In comparison with density functional theory calculations applied to both the Co/alcohol clusters and the naked Co cluster anions, an unambiguous structural assignment is achieved. It turns out that structures are preferred with a maximum number of hydrogen bonds between the OH groups and the Co···Co units. These hydrogen bonds are typical for anionic species leading to an activation of the OH groups which is indicated by large red-shifts of the OH stretching frequencies compared to the naked alcohols. For each (n,m) cluster, the frequency shifts systematically with respect to the different alcohols, but the type of structure is identical for all alcohol ligands. The application of IR spectroscopy turns out to be an ideal tool not only as a probe for structures but also for spin states which significantly influence the predicted OH stretching frequencies.  相似文献   

11.
Hydrothermal reactions of Na3VO4, an appropriate Cu(II) source, bisterpy and an organodiphosphonate, H2O3P(CH2)nPO3H2 (n = 1-6) yielded a family of materials of the type [Cu2(bisterpy)]4+/VxOy(n-)/[O3P(CH2)nPO3]4-. This family of bimetallic oxides is characterized by an unusual structural diversity. The oxides [[Cu2(bisterpy)]V2O4[O3PCH2PO3H]2] (1), [[Cu2(bisterpy)(H2O)]VO2[O3P(CH2)3PO3][HO3P(CH2)3PO3H2]] (4) and [[Cu2(bisterpy)]V2O4[O3P(CH2)6PO3H]2].2H2O (7.2H2O) are one-dimensional, while [[Cu2(bisterpy)(H2O)2]V2O4[O3P(CH2)2PO3][HO3P(CH2)2PO3H]2] (2), [[Cu2(bisterpy)]V4O8[O3P(CH23PO3]2].4H2O (3.4H2O) and [[Cu2(bisterpy)]V2O4(OH)2[O3P(CH2)4PO3]].4H2O (5.4H2O) are two-dimensional. The V(IV) oxide [[Cu2(bisterpy)]V4O4[O3P(CH2)5PO3H]4].7.3H2O (6.7.3H2O) provides a relatively unusual example of a three-dimensional bimetallic oxide phosphonate. The structures reveal a variety of V/P/O substructures as building blocks.  相似文献   

12.
Structures, energetics, and vibrational spectra are investigated for small pure (TiO(2))(n), (SiO(2))(n), and mixed Ti(m)Si(n-m)O(2n) [n = 2-5, m = 1 to (n - 1)] oxide clusters by density functional theory (DFT). The BP86/ATZP level of theory is employed to obtain constitutional isomers of the oxide clusters. In accordance with previous studies, our calculations show three-dimensional compact structures are preferred for pure (TiO(2))(n) with oxo-stabilized higher hexavalent states, and linear chain structures are favored for pure (SiO(2))(n) with tetravalent states. However, the herein theoretically first reported mixed Ti(m)Si(n-m)O(2n) oxide clusters prefer either three-dimensional compact or linear chain structures depending upon the stoichiometry of the compound. Vibrational analysis of the important modes of some highly stable structures is provided. Coupled-cluster single and double excitation (with triples) [CCSD(T)] computed energy gaps for the TiO(2) dimers compare well with results from previous study. Excitation energies are computed by use of time-dependent (TD) DFT and equation-of-motion coupled-cluster calculations with singles and doubles (EOM-CCSD) for the most stable isomers.  相似文献   

13.
In an effort to elucidate their structures, mass-selected Cl--(CH4)n (n = 1-10) clusters are probed using infrared spectroscopy in the CH stretch region (2800-3100 cm(-1)). Accompanying ab initio calculations at the MP2/6-311++G(2df,2p) level for the n = 1-3 clusters suggest that methane molecules prefer to attach to the chloride anion by single linear H-bonds and sit adjacent to one another. These conclusions are supported by the agreement between experimental and calculated vibrational band frequencies and intensities. Infrared spectra in the CH stretch region for Cl--(CH4)n clusters containing up to ten CH4 ligands are remarkably simple, each being dominated by a single narrow peak associated with stretching motion of hydrogen-bonded CH groups. The observations are consistent with cluster structures in which at least ten equivalent methane molecules can be accommodated in the first solvation shell about a chloride anion.  相似文献   

14.
Rate coefficients for the gas-phase reaction of the OH radical with (E)-2-pentenal (CH(3)CH(2)CH[double bond]CHCHO), (E)-2-hexenal (CH(3)(CH(2))(2)CH[double bond]CHCHO), and (E)-2-heptenal (CH(3)(CH(2))(3)CH[double bond]CHCHO), a series of unsaturated aldehydes, over the temperature range 244-374 K at pressures between 23 and 150 Torr (He, N(2)) are reported. Rate coefficients were measured under pseudo-first-order conditions in OH with OH radicals produced via pulsed laser photolysis of HNO(3) or H(2)O(2) at 248 nm and detected by pulsed laser-induced fluorescence. The rate coefficients were independent of pressure and the room temperature rate coefficients and Arrhenius expressions obtained are (cm(3) molecule(-1) s(-1) units): k(1)(297 K)=(4.3 +/- 0.6)x 10(-11), k(1)(T)=(7.9 +/- 1.2)x 10(-12) exp[(510 +/- 20)/T]; k(2)(297 K)=(4.4 +/- 0.5)x 10(-11), k(2)(T)=(7.5 +/- 1.1)x 10(-12) exp[(520 +/- 30)/T]; and k(3)(297 K)=(4.4 +/- 0.7)x 10(-11), k(3)(T)=(9.7 +/- 1.5)x 10(-12) exp[(450 +/- 20)/T] for (E)-2-pentenal, (E)-2-hexenal and (E)-2-heptenal, respectively. The quoted uncertainties are 2sigma(95% confidence level) and include estimated systematic errors. Rate coefficients are compared with previously published room temperature values and the discrepancies are discussed. The atmospheric degradation of unsaturated aldehydes is also discussed.  相似文献   

15.
Infrared spectra of mass-selected F- -(CH4)n (n = 1-8) clusters are recorded in the CH stretching region (2500-3100 cm-1). Spectra for the n = 1-3 clusters are interpreted with the aid of ab initio calculations at the MP2/6-311++G(2df 2p) level, which suggest that the CH4 ligands bind to F- by equivalent, linear hydrogen bonds. Anharmonic frequencies for CH4 and F--CH4 are determined using the vibrational self-consistent field method with second-order perturbation theory correction. The n = 1 complex is predicted to have a C3v structure with a single CH group hydrogen bonded to F-. Its spectrum exhibits a parallel band associated with a stretching vibration of the hydrogen-bonded CH group that is red-shifted by 380 cm-1 from the nu1 band of free CH4 and a perpendicular band associated with the asymmetric stretching motion of the nonbonded CH groups, slightly red-shifted from the nu3 band of free CH4. As n increases, additional vibrational bands appear as a result of Fermi resonances between the hydrogen-bonded CH stretching vibrational mode and the 2nu4 overtone and nu2+nu4 combination levels of the methane solvent molecules. For clusters with n < or = 8, it appears that the CH4 molecules are accommodated in the first solvation shell, each being attached to the F- anion by equivalent hydrogen bonds.  相似文献   

16.
Reaction of Fe(CO)2(NO)2 and [(ON)Fe(S,S-C6H3R)2]- (R = H (1), CH3 (1-Me))/[(ON)Fe(SO2,S-C6H4)(S,S-C6H4)]- (4) in THF afforded the diiron thiolate/sulfinate nitrosyl complexes [(ON)Fe(S,S-C6H3R)2 Fe(NO)2]- (R = H (2), CH3 (2-Me)) and [(ON)Fe(S,SO2-C6H4)(S,S-C6H4)Fe(NO)2]- (3), respectively. The average N-O bond lengths ([Fe(NO)2] unit) of 1.167(3) and 1.162(4) A in complexes 2 and 3 are consistent with the average N-O bond length of 1.165 A observed in the other structurally characterized dinitrosyl iron complexes with an {Fe(NO)2}9 core. The lower nu(15NO) value (1682 cm(-1) (KBr)) of the [(15NO)FeS4] fragment of [(15NO)Fe(S,S-C6H3CH3)2 Fe(NO)2]- (2-Me-15N), compared to that of [(15NO)Fe(S,S-C6H3CH3)2]- (1-Me-15N) (1727 cm(-1) (KBr)), implicates the electron transfer from {Fe(NO)2}10 Fe(CO)2(NO)2 to complex 1-Me/1 may occur in the process of formation of complex 2-Me/2. Then, the electronic structures of the [(NO)FeS4] and [S2Fe(NO)2] cores of complexes 2, 2-Me, and 3 were best assigned according to the Feltham-Enemark notation as the {Fe(NO)}7-{Fe(NO)2}9 coupling (antiferromagnetic interaction with a J value of -182 cm(-1) for complex 2) to account for the absence of paramagnetism (SQUID) and the EPR signal. On the basis of Fe-N(O) and N-O bond distances, the dinitrosyliron {L2Fe(NO)2} derivatives having an Fe-N(O) distance of approximately 1.670 A and a N-O distance of approximately 1.165 A are best assigned as {Fe(NO)2}9 electronic structures, whereas the Fe-N(O) distance of approximately 1.650 A and N-O distance of approximately 1.190 A probably imply an {Fe(NO)2}10 electronic structure.  相似文献   

17.
Two intramolecular stabilized arylaluminum dihydrides, (2-(NEt2CH2)-6-MeC6H3)AlH2 (1) and (2,6-(NEt2CH2)2C6H3)AlH2 (2), were prepared by reducing the corresponding dichlorides with an excess of LiAlH4 in diethyl ether. Reactions of 1 and 2 with elemental selenium afforded the dimeric arylaluminum selenides [(2-(NEt2CH2)-6-MeC6H3)AlSe]2 (3) and [(2,6-(NEt2CH2)2C6H3)AlSe]2 (4). Reaction of 2 with metallic tellurium gave the dimeric arylaluminum telluride [(2,6-(NEt2CH2)2C6H3)AlTe]2 (5). The possible reaction pathway is discussed, and molecular structures determined by single-crystal X-ray analyses are presented for 3 and 5.  相似文献   

18.
Smog chamber/Fourier transform infrared (FTIR) techniques were used to measure k(Cl+C(x)F(2x+1)CH(OH)(2)) (x = 1, 3, 4) = (5.84 +/- 0.92) x 10(-13) and k(OH+C(x)F(2x+1)CH(OH)(2)) = (1.22 +/- 0.26) x 10(-13) cm(3) molecule(-1) s(-1) in 700 Torr of N(2) or air at 296 +/- 2 K. The Cl initiated oxidation of CF(3)CH(OH)(2) in 700 Torr of air gave CF(3)COOH in a molar yield of 101 +/- 6%. IR spectra of C(x)F(2x+1)CH(OH)(2) (x = 1, 3, 4) were recorded and are presented. An upper limit of k(CF(3)CHO+H(2)O) < 2 x 10(-23) cm(3) molecule(-1) s(-1) was established for the gas-phase hydration of CF(3)CHO. Bubbling CF(3)CHO/air mixtures through liquid water led to >80% conversion of CF(3)CHO into the hydrate within the approximately 2 s taken for passage through the bubbler. These results suggest that OH radical initiated oxidation of C(x)F(2x+1)CH(OH)(2) hydrates could be a significant source of perfluorinated carboxylic acids in the environment.  相似文献   

19.
用密度泛函(DFT)方法(B3LYP/6-31+G^*)研究了硅硫团簇[(SiS2)nS]^-(n=1-4)的可能几何构型,得到各稳定构型的电子结构,并 相应的振动频率,预测了稳定构型的振动光谱,由其稳定构型的比较可在理论上预测团簇的生长规律,并可初步预测团簇的形成机理。  相似文献   

20.
The infrared spectra of the water-nitrogen complexes trapped in argon matrices have been studied with Fourier transform infrared absorption spectroscopy. The absorption lines of the H20-N2 1:1, 1:2, 1:n, and 2:1 complexes have been confirmed on the basis of the concentration effects. In addition, we have observed a few lines and propose the assignments for the 2:2, 2:3, and 2:4 complexes in the nu1 symmetric stretching and nu2 bending regions of the proton-acceptor molecule, and in the bonded OH stretching region of the proton-donor molecule. The redshifts in the bonded OH stretching mode and blueshifts in the OH bending mode suggest that the hydrogen bonds in the (H2O)2-(N2)n complexes with n = 1-4 are strengthened by the cooperative effects compared to the pure H2O dimer. Two absorption bands due to the 3:n complexes are also observed near the bonded OH stretching region of the H2O trimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号