首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An optical sensor for the measurement of carbon dioxide in Modified Atmosphere Packaging (MAP) applications has been developed. It is based on the fluorescent pH indicator 1-hydroxypyrene-3,6,8-trisulfonate (HPTS) immobilised in a hydrophobic organically modified silica (ormosil) matrix. Cetyltrimethylammonium hydroxide was used as an internal buffer system. Fluorescence is measured in the phase domain by means of the Dual Luminophore Referencing (DLR) sensing scheme which provides many of the advantages of lifetime-based fluorometric sensors and makes it compatible with established optical oxygen sensor technology. The long-term stability of the sensor membranes has been investigated. The sensor displays 13.5 degrees phase shift between 0 and 100% CO2 with a resolution of better than 1% and a limit of detection of 0.08%. Oxygen cross-sensitivity is minimised (0.6% quenching in air) by immobilising the reference luminophore in polymer nano-beads. Cross-sensitivity towards chloride and pH was found to be negligible. Temperature effects were studied, and a linear Arrhenius correlation between ln k and 1/T was found. The sensor is stable over a period of at least seven months and its output is in excellent agreement with a standard reference method for carbon dioxide analysis.  相似文献   

2.
A new hybrid photostable donor–acceptor mesoporous SBA‐15 silica system was designed and prepared. It consists of an encapsulated donor, the Super Yellow (SY) polymer, which transfers the photoexcitation energy directly to an acceptor dye that is linked outside the framework. The obtained composite material was characterized by X‐ray diffraction, nitrogen‐physisorption porosimetry, diffuse‐reflectance (DR)‐UV/Vis spectroscopy and photoluminescence, space‐ and time‐resolved confocal microscopy. The physico‐chemical analyses showed that the system behaves as an efficient Förster resonance energy transfer (FRET) pair, and high photoluminescence was observed from the acceptor. The presented photonic antenna is the first example of dye sensitization by polymer‐loaded mesoporous silica and represents a step forward in the search for new efficient and stable materials with opto‐electronic applications.  相似文献   

3.
《Electroanalysis》2005,17(7):625-629
Congo red (CR) was immobilized on a silica/aniline xerogel through electrostatic interaction. The dye is strongly retained and is not easily leached from the xerogel matrix. The material containing the adsorbed dye was used to prepare a carbon paste electrode and the electrochemical properties of the hybrid material were investigated using cyclic voltammetry and amperometry. The modified electrode was used to study the electrochemical oxidation of ascorbic acid. The adsorbed dye mediates ascorbic acid oxidation at the solid electrode surface‐solution interface at an anodic potential of 0.18 V at pH 7, in a 0.5 mol L?1 KCl solution. This novel modified carbon paste electrode shows good analytical performance for the determination of ascorbic acid in commercial Vitamin C tablets.  相似文献   

4.
We prepared silica-dye-nanocrystal hybrid particles and studied the energy transfer from semiconductor nanocrystals (= donor) to organic dye molecules (= acceptor). Multishell CdSe/CdS/ZnS semiconductor nanocrystals were adsorbed onto monodisperse Sto?ber silica particles with an outer silica shell of thickness 2-23 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the energy transfer efficiency, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of nanocrystals with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with numerically calculated FRET efficiencies and by control experiments confirming attractive interaction between the nanocrystals and Texas Red freely dissolved in solution.  相似文献   

5.
Twenty-one hybrid materials incorporating cobalt(III) corrole complexes were synthesized by a sol-gel process or by grafting the metallocorrole onto a mesostructured silica of the SBA-15 type. All the materials show an almost infinite selectivity for carbon monoxide with respect to dinitrogen and dioxygen in the low-pressure domain where the chemisorption phenomenon is predominant. This peculiar property is of prime importance for an application as a CO sensor. The selectivity slightly decreases at high pressures where nonselective physisorption phenomena mainly occur. The percentage of active sites for CO chemisorption ranges from 22 to 64 %. This low percentage may be attributable to interactions between the cobalt(III) corroles with silanol or siloxane groups remaining at the surface of the materials which prevent further coordination of the CO molecule. Notably, the most efficient materials are those prepared in the presence of a protecting ligand (pyridine) during the gelation or the grafting process. The removal of this ligand after the gelation process releases a cavity around the cobalt ion that favors the coordination of a carbon monoxide molecule. The CO adsorption properties of the SBA-15 hybrid were not affected over a period of several months thus indicating a high stability of the material. Conversely, the xerogel capacities slowly decrease owing to the evolution of the material structure.  相似文献   

6.
Liu S  Zhang X  Lin X  Wu X  Fu F  Xie Z 《Electrophoresis》2007,28(11):1696-1703
A new analytical method, pressurized CEC (pCEC) with amperometric detection (AD) using 1.5 microm RP nonporous silica packed columns has been developed for the rapid separation and determination of four Sudan dyes in hot chilli. The influence of several experimental parameters on the retention behavior has been investigated. The electrochemical oxidation of Sudans I-IV separated by pCEC can be reliably monitored with a carbon electrode at +0.95 V (vs. Ag/AgCl). Fast and efficient separation of the analytes was achieved within 7 min by pCEC under the optimum conditions with an ACN/water (95:5%) mobile phase containing formic acid (pH 4.3), 5% acetone and 0.002% triethylamine using a separation voltage of 12 kV. The detection limits for four Sudan dyes ranged from 8.0 x 10(-7) to 1.2 x 10(-6) mol/L. To evaluate the feasibility and reliability of this method, the proposed pCEC-AD method was further demonstrated with hot chilli samples spiked with Sudan dyes.  相似文献   

7.
The polyester/silica hybrid resins and their hybrid polyurethanes were prepared via in situ (IS) or blending (BL) method using different silica sols. The effects of preparation methods, silica type and content on the interaction and microstructure of polymer/silica hybrid materials were investigated by FTIR, viscosity measurement, TGA, DMA and SAXS, respectively. It was found that both IS and BL methods formed agglomerates of silica-rich phases and primary silica-rich phases in the hybrid films, but the former caused stronger interaction between silica and polymer than the latter, resulting in much bigger agglomerates and compacter structure. The ethoxy group at silica was favorable for enhancing the interaction between silica phase and polymer, even between silica phases as well. The interaction between silica phase and polymer caused increasing viscosity, modulus and Tg, while the interaction between silica phases themselves increased the extent of micro-phase separation, especially for the hybrid films prepared by IS method.  相似文献   

8.
郑明明  吴剑虹  骆丹  余琼卫  冯钰锜 《色谱》2007,25(5):619-622
以腐殖酸键合硅胶作为固相萃取介质,建立了固相萃取柱净化、高效液相色谱同时  相似文献   

9.
通过电沉积金属铜于单壁碳纳米管( SWNTs)/Nafion 修饰的玻碳电极表面构建了一种经济且制备简单的多巴胺传感器。该纳米材料的形貌和成分用扫描电镜和能谱仪表征。不同扫速和pH条件下,以其修饰玻碳电极构建的电化学体系受吸附控制。多巴胺在该电极表面的反应机理为两电子双质子的过程,电荷转移系数α=0.6,电子转移数n=2.67,异相电子转移速率ks=1.38 s-1。在优化条件下,用微分脉冲伏安法检测多巴胺的线性方程为Ipa(μA)=-0.054c(μmol/L)-3.82(R2=0.9988),线性范围5~100μmol/L,检出限为0.014μmol/L(S/N=3)。此传感器制备简单、成本低、灵敏性高、稳定性好、重现性好,检测人尿液中多巴胺的回收率为96.5%~100.4%,相对标准偏差为1.2%~2.4%。  相似文献   

10.
The performance of three types of high-speed counter-current chromatography (HSCCC) instruments was assessed for their use in separating components in hydrophilic and hydrophobic dye mixtures. The HSCCC instruments compared were: (i) a J-type coil planet centrifuge (CPC) system with a conventional multilayer-coil column, (ii) a J-type CPC system with a spiral-tube assembly-coil column, and (iii) a cross-axis CPC system with a multilayer-coil column. The hydrophilic dye mixture consisted of a sample of FD&C Blue No. 2 that contained mainly two isomeric components, 5,5'- and 5,7'-disulfonated indigo, in the ratio of ~7:1. The hydrophobic dye mixture consisted of a sample of D&C Red No. 17 (mainly Sudan III) and Sudan II in the ratio of ~4:1. The two-phase solvent systems used for these separations were 1-butanol/1.3M HCl and hexane/acetonitrile. Each of the three instruments was used in two experiments for the hydrophilic dye mixture and two for the hydrophobic dye mixture, for a total of 12 experiments. In one set of experiments, the lower phase was used as the mobile phase, and in the second set of experiments, the upper phase was used as the mobile phase. The results suggest that: (a) use of a J-type instrument with either a multilayer-coil column or a spiral-tube assembly column, applying the lower phase as the mobile phase, is preferable for separating the hydrophilic components of FD&C Blue No. 2; and (b) use of a J-type instrument with multilayer-coil column, while applying either the upper phase or the lower phase as the mobile phase, is preferable for separating the hydrophobic dye mixture of D&C Red No. 17 and Sudan II.  相似文献   

11.
A new design for a quasi‐solid‐state Forster resonance energy transfer (FRET) enabled solar cell with unattached Lucifer yellow (LY) dye molecules as donors and CdS/CdSe quantum dots (QDs) tethered to titania (TiO2) as acceptors is presented. The Forster radius is experimentally determined to be 5.29 nm. Sequential energy transfer from the LY dye to the QDs and electron transfer from the QDs to TiO2 is followed by fluorescence quenching and electron lifetime studies. Cells with a donor–acceptor architecture (TiO2/CdS/CdSe/ZnS‐LY/S2?‐multi‐walled carbon nanotubes) show a maximum incident photon‐to‐current conversion efficiency of 53 % at 530 nm. This is the highest efficiency among Ru‐dye free FRET‐enabled quantum dot solar cells (QDSCs), and is much higher than the donor or acceptor‐only cells. The FRET‐enhanced solar cell performance over the majority of the visible spectrum paves the way to harnessing the untapped potential of the LY dye as an energy relay fluorophore for the entire gamut of dye sensitized, organic, or hybrid solar cells.  相似文献   

12.
The coadsorption of mixed anionic–nonionic surfactants, sodium dodecylbenzenesulfonate with Triton X‐100, on the surface of eggshell membrane was investigated based on adsorption isotherms to improve the solid‐phase extraction performance of eggshell membrane toward organic contaminants. Results showed that even though excess Triton X‐100 might inhibit the adsorption of sodium dodecylbenzenesulfonate, a low dosage of Triton X‐100 can significantly improve sodium dodecylbenzenesulfonate modification and enhance the extraction efficiency of eggshell membrane from 73.7 to 100.4% because of the formation of mixed hemimicelles. The highest recovery was achieved at 2:8 (Triton X‐100/sodium dodecylbenzenesulfonate mass ratios), and multiple mechanisms involving π–π interactions, hydrophobic effect, and π–π electron donor–acceptor interactions contributed to the strong extraction affinity. When mixed, the Triton X‐100 and sodium dodecylbenzenesulfonate modified eggshell membrane packed cartridge coupled with high‐performance liquid chromatography was applied for the simultaneous determination of trace Sudan I–IV, and low detection limits (0.16–0.26 ng/L) were achieved with satisfactory linearity (R 2 > 0.999) in 10–10 000 μg/L. For real samples, Sudan II and III in one chilli sauce sample were found at 4.3 and 1.7 μg/kg. Sudan I–IV recoveries at three spiked levels were 87.4–102.9% with precisions <6.8%. Comparison with commonly used solid‐phase extraction adsorbents and methods further reflected the superiorities of the proposed adsorbent in sensitivity, retention ability, and applicability.  相似文献   

13.
Silica/perfluoroalkyl methacrylate polymer (PHDFDMA) particles were prepared using various types of silica by polymerization in supercritical carbon dioxide. There are three steps in the fabrication of inorganic/organic hybrid composites: silane treatment, polymerization, and soxhlet extraction. After these steps, we observed the morphology of silica/PHDFDMA particles using field emission scanning electron microscope and transmission electron microscope. From these analyses, we can confirm that the silica/PHDFDMA core/shell particles were obtained when we used Ludox and silica gel as a silica template. On the other hand, core/shell particles were not formed when using fused silica and precipitated silica. In addition, to confirm the amount of polymer on silica, we performed an analysis using thermogravimetric analysis and electron probe micro-analyzer. In this case, PHDFDMA was approximately 20 wt.% on the silica gel and 40 wt.% on the Ludox, respectively. When using fused silica and precipitated silica as a template, amount of PHDFDMA on silica was maximum 5 wt.% and over 40 wt.%, respectively. From these results, to obtain enough PHDFDMA encapsulated silica particle, colloidal silica, Ludox is the best template in four different types of silica.  相似文献   

14.
Owing to its combination of unique selectivity and mechanical strength, commercial carbon clad zirconia (C/ZrO2) has been widely used for many applications, including fast two-dimensional liquid chromatography (2DLC). However, the low surface area available (only 20–30 m2/g for commercial porous ZrO2) limits its retentivity. We have recently addressed this limitation by developing a carbon phase coated on the high surface area of HPLC grade alumina (C/Al2O3). This material provides higher retentivity and comparable selectivity, but its use is still limited by how few HPLC quality types of alumina particles (e.g., particle size, surface area, and pore size) are available. In this work, we have developed useful carbon phases on silica particles, which are available in various particle sizes, pore sizes and forms of HPLC grade. To make the carbon phase on silica, we first treat the silica surface with a monolayer or less of metal cations that bind to deprotonated silanols to provide catalytic sites for carbon deposition. After Al (III) treatment, a carbon phase is formed on the silica surface by chemical vapor deposition at 700 °C using hexane as the carbon source. The amount of Al (III) on the surface was varied to assess its effect on carbon deposition, and the carbon loading was varied at different Al (III) levels to assess its effect on the chromatographic properties of the various carbon adsorbents. We observed that use of a concentration of Al (III) corresponding to a full monolayer leads to the most uniform carbon coating. A carbon coating sufficient to cover all the Al (III) sites, required about 4–5 monolayers in this work, provided the best chromatographic performance. The resulting carbon phases behave as reversed phases with reasonable efficiency (50,000–79,000 plates/m) for non-aromatic test species.  相似文献   

15.
A convenient protocol to fabricate an organic–inorganic hybrid system with covalently bound light‐harvesting chromophores (stilbene and terphenylene–divinylene) and an electron acceptor (titanium oxide) is described. Efficient energy‐ and electron‐transfer processes may take place in these systems. Covalent bonding between the acceptor chromophores and the titania/silica matrix would be important for electron transfer, whereas fluorescence resonant energy transfer (FRET) would strongly depend on the ratio of donor to acceptor chromophores. Time‐resolved spectroscopy was employed to elucidate the detailed photophysical processes. The coupling of FRET and electron transfer was shown to work coherently to lead to photocurrent enhancement. The photocurrent responses reached a maximum when the hybrid‐material thin film contained 60 % acceptor and 40 % donor.  相似文献   

16.
The role of polydimethylsiloxane (PDMS) as a compatibilizer of polyimide/silica hybrid composites was investigated. Introduction of PDMS into a polyimide matrix retards the phase separation of hybrid composites and also prevents the formation of high‐molecular‐weight silicate. PDMS interacts with silica because of the similarity of its structure with the sol‐gel glass matrix of the silica precursor, indicating that poly(imide siloxane)/silica might be a good candidate material for organic/inorganic hybrid composites.  相似文献   

17.
Membrane-based gas sensors were developed and used for determining the composition on bi-component mixtures in the 0-100% range, such as oxygen/nitrogen and carbon dioxide/methane (biogas). These sensors are low cost and are aimed at a low/medium precision market.The paper describes the use of this sensor for two gas mixtures: carbon dioxide/methane and carbon dioxide/helium. The membranes used are poly(dimethylsiloxane) (PDMS) and Teflon-AF hollow fibers. The response curves for both sensors were obtained at three different temperatures. The results clearly indicate that the permeate pressure of the sensors relates to the gas mixture composition at a given temperature. The data is represented by a third order polynomial. The sensors enable quantitative carbon dioxide analysis in binary mixtures with methane or helium. The response of the sensors is fast (less than 50 s), continuous, reproducible and long-term stable over a period of 2.3×107 s (9 months). The absolute sensitivity of the sensors depends on the carbon dioxide feed concentration ranging from 0.03 to 0.13 MPa.  相似文献   

18.
聚醚型氨酯酰亚胺/二氧化硅杂化材料的合成与性能研究   总被引:4,自引:0,他引:4  
利用Sol Gel共聚合反应制备出聚醚型氨酯酰亚胺 (PUI) /二氧化硅 (SiO2 )杂化材料 .利用NMR、FTIR、TG、DSC及SEM等测试手段对性能进行了基本表征 .FTIR研究结果发现在 10 0℃下能同时完成有机相PUI的亚胺化和无机相SiO2 凝胶网络的Sol Gel转变 .TG及SEM发现SiO2 含量为 9wt%时SiO2 聚集相粒径在 0 2~1 0 μm之间 ,耐热性明显提高并达到最佳 ;发现SiO2 含量的增加其颗粒粒径不断增大 ,并不断聚集成大粒径SiO2 相 ,有机和无机相分离明显 .DSC研究显示 ,SiO2 相的引入 ,对杂化材料聚醚软段富集相的Tg 不产生明显影响 .  相似文献   

19.
A new method involving matrix solid-phase dispersion (MSPD) extraction and UPLC in conjunction with photodiode array detection was developed for the rapid and simple determination of Sudan dyes in chili powder. Separation of Sudan I, Sudan II, Sudan III, and Sudan IV was achieved within 2 min on the 1.7 μm Acquity UPLC BEH C18 column by using gradient elution with a mobile phase consisting of acetonitrile–water at a flow rate of 0.5 mL min?1. Optimization of MSPD extraction parameters, such as type of solid sorbent and elution solvent were carried out. Optimal conditions selected for MSPD extraction were 0.25 g of sample, 0.5 g of silica gel as solid sorbent, and 7 mL of acetonitrile–methanol (9:1, v/v) as eluting solvent. Limits of detection ranged between 0.25 and 0.30 mg kg?1 depending on the dye involved. All analytes provided average recoveries from spiked (at 1, 1.5, and 2 mg kg?1) chili powder samples ranging from 81 to 106%. The method was applied to the analysis of chili powder samples obtained from different countries.  相似文献   

20.
A new organic/inorganic hybrid nonlinear optical (NLO) material was developed by the sol-gel process of analkoxysilane dye with tetraethoxysilane. A NLO moiety based on 4-nitro-4'-hydroxy azobenzene was covalently bonded tothe triethoxysilane derivative, i.e. γ-isocyanatopropyl triethoxysilane. The preparation process and properties of the sol-gelderived NLO polymer were studied and characterized by SEM, FTIR, ~1H-NMR, UV-Vis, DSC and second harmonicgeneration (SHG) measurement. The results indicated that the chemical bonding of the chromophores to the inorganic SiO_2networks induces low dipole alignment relaxation and preferable orientational stability. The SHG measurements also showedthat the bonded polymer film containing 75 wt% of the akoxysilane dye has a high electro-optic coefficient (r_(33)) of 7.1 pm/Vat 1.1 μm wavelength, and exhibit good SHG stability, the r_(33) values can maintain about 92.7% of its initial value at roomtemperature for 90 days, and can maintain about 59.3% at 100℃ for 300 min.s  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号