首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkylation of (ArNHCH2CH2){(2-C5H4N)CH2}NH with RX [RX = MeI, 4-CH2=CH(C6H4)CH2Cl) and (2-C5H5N)CH2Cl] in the presence of base has allowed access to the sterically demanding multidentate nitrogen donor ligands, {(2,4,6-Me3C6H2)NHCH2CH2}{(2-C5H4N)CH2}NMe (L1), {(2,6-Me3C6H3)NHCH2CH2}{(2-C5H4N)CH2}NCH2(C6H4)-4-CH=CH2 (L2) and (ArNHCH2CH2){(2-C5H4N)CH2}2N (Ar = 2,4-Me2C6H3 L3a, 2,6-Me2C6H3 L3b) in moderate yield. L3 can also be prepared in higher yield by the reaction of (NH2CH2CH2){(2-C5H4N)CH2}2N with the corresponding aryl bromide in the presence of base and a palladium(0) catalyst. Treatment of L1 or L2 with MCl2 [MCl2 = CoCl2.6H2O or FeCl2(THF)1.5] in THF affords the high spin complexes [(L1)MCl2](M = Co 1a, Fe 1b) and [(L2)MCl2](M = Co 2a, Fe 2b) in good yield, respectively; the molecular structure of reveals a five-coordinate metal centre with bound in a facial fashion. The six-coordinate complexes, [(L3a)MCl2](M = Co 3a, Fe 3b, Mn 3c) are accessible on treatment of tripodal L3a with MCl2. In contrast, the reaction with the more sterically encumbered leads to the pseudo-five-coordinate species [(L3b)MCl2](M = Co 4a, Fe 4b) and, in the case of manganese, dimeric [(L3b)MnCl(mu-Cl)]2 (4c); in 4a and 4b the aryl-substituted amine arm forms a partial interaction with the metal centre while in 4c the arm is pendant. The single crystal X-ray structures of , 1a, 3b.MeCN, 3c.MeCN, 4b.MeCN and 4c are described as are the solution state properties of 3b and 4b.  相似文献   

2.
The crystal and molecular structure of the layered weak-ferromagnet Fe[CH(3)PO(3)] x H(2)O has been solved by X-ray single-crystal diffraction techniques. Crystal data for Fe[CH(3)PO(3)] x H(2)O are the following: orthorhombic space group Pna2(1); a =17.538(2), b = 4.814(1), c = 5.719(1) A. The structure is lamellar, and it consists of alternating organic and inorganic layers along the a direction of the unit cell. The inorganic layers are made of Fe(II) ions octahedrally coordinated by five phosphonate oxygen atoms and one from oxygen of the water molecule. Each phosphonate group coordinates four metal ions, through chelation and bridging, making in this way a cross-linked Fe-O network. The resultant layers are then separated by bilayers of the methyl groups, with van der Waals contacts between them. The compound is air stable, and it dehydrates under inert atmosphere at temperatures above 120 degrees C. The oxidation state of the metal ion is +2, and the electronic configuration is d(6)( )()high spin (S = 2), as determined from dc magnetic susceptibility measurements from 150 K to ambient temperature. Below 100 K, the magnetic moment of Fe[CH(3)PO(3)] x H(2)O rises rapidly to a maximum at T(max) approximately equal to 24 K, and then it decreases again. The onset of peak at T = 25 K is associated with the 3D antiferromagnetic long-range ordering, T(N). The observed critical temperature, T(N), is like all the other previously reported Fe(II) phosphonates, and it appears to be nearly independent of the interlayer spacing in this family of hybrid organic-inorganic layered compounds. Below T(N), the compound behaves as a "weak ferromagnet", and represents the third kind of magnetic materials with a spontaneous magnetization below a finite critical temperature, ferromagnets and ferrimagnets being the other two types.  相似文献   

3.
A new cobalt(II) carboxylate-phosphonate, namely, Co[HO2C(CH2)3NH(CH2PO3H)2]2, with a layered architecture has been synthesized by hydrothermal reactions. The Co(II) ion in the title compound is octahedrally coordinated by six phosphonate oxygen atoms from four carboxylate phosphonate ligands. Neighboring CoO6 octahedra are interconnected by phosphonate groups into a 2D layer with a 4,4-net topology. Adjacent layers are further cross-linked via hydrogen bonds between the noncoordinate carboxylate groups and noncoordinate phosphonate oxygens. The ac and dc magnetic susceptibility and magnetization measurements indicate that Co[HO2C(CH2) 3NH(CH2PO3H)2]2 is a canted antiferromagnet with T(c) = 8.75 K.  相似文献   

4.
Two novel Mn12 derivatives [Mn12O12(O2CC[triple bond]CH)16(H2O)4] x 3H2O (1) and [Mn12(O2CC[triple bond]CC6H5)16(H2O)4] x 3H2O (2) have been prepared and characterized. Magnetic measurements confirm that both function as single-molecule magnets (SMM), showing frequency-dependent out-of-phase AC susceptibility signals and magnetization hysteresis curves. Thermal stability studies of both complexes were first conducted in the solid state. While complex 1 undergoes a sudden exothermal decomposition at T(onset) = 118 degrees C, complex 2 exhibits a higher stability. Thermolysis reaction of 1 was hence assessed in solution to yield dark red crystals of a two-dimensional Mn(II)-based co-ordination polymer [Mn3(O2CC[triple bond]CH)6(H2O)4] x 2H2O (3), which corresponds to an extended sheet-like structure that crystallizes in the monoclinic space group P2(1)/n; a = 9.2800(2) angstroms, b = 9.4132(2) angstroms, c = 14.9675(3) angstroms, beta = 99.630(1) degrees, and Z = 2. Finally, the magnetic properties of complex 3 have been studied on an oriented single crystal over two different orientations of the reciprocal vector versus the external field.  相似文献   

5.
用X-射线晶体结构衍射法测定了〔C5H4C(CH3)2CH2CH=CH2〕Sm(OH)Cl·2MgCl2·4THF的晶体结构。它属三斜晶系,空间群为P1,a=10.773(2),b=12.836(3),c=15.478(3),α=111.46(3),β=107.71(3),γ=92.54(3)°,V=1868(1)3,Mr=827.91,Dx=1.472g/cm3,μ=2.0006mm-1,F(000)=840,Z=2,R=0.041,wR=0.050(I≥3σ(I))。分子中Sm原子的配位数为8,形成一个严重扭曲的八面体结构;2个Mg原子的配位情况相似,它们的配位数都是6,分别构成2个扭曲的八面体。这3个八面体通过3个共平面联接  相似文献   

6.
1INTRODUCTIONOctacarbonyldicobaltisaveryconvenientstartingmaterialforthepreparationofalmostanycobaltcompound〔1〕.Thereactionso...  相似文献   

7.
Cao DK  Li YZ  Song Y  Zheng LM 《Inorganic chemistry》2005,44(10):3599-3604
Based on the [hydroxy(4-pyridyl)methyl]phosphonate ligand, three compounds with formula Ni{(4-C(5)H(4)N)CH(OH)PO(3)}(H(2)O) (1), Cd{(4-C(5)H(4)N)CH(OH)PO(3)}(H(2)O) (2), and Gd{(4-C(5)H(4)N)CH(OH)P(OH)O(2)}(3).6H(2)O (3) have been synthesized under hydrothermal conditions. The crystal data for 1 are as follows: orthorhombic, space group Pbca, a = 8.7980(13) A, b = 10.1982(15) A, and c = 17.945(3) A. For 2 the crystal data are as follows: monoclinic, space group C2/c, a = 23.344(6) Angstroms, b = 5.2745(14) Angstroms, c = 16.571(4) Angstroms, and beta = 121.576(4) degrees. The crystal data for 3 are as follows: rhombohedral, space group R, a = 22.2714(16) Angstroms, b = 22.2714(16) Angstroms, and c = 9.8838(11) Angstroms. Compound 1 adopts a three-dimensional pillared layered structure in which the inorganic layers made up of corner-sharing {NiO(5)N} octahedra and {CPO(3)} tetrahedra are connected by pyridyl groups. A two-dimensional layer structure is found in compound 2, which contains alternating inorganic double chains and pyridyl rings. Compound 3 has a one-dimensional chain structure where the Gd atoms are triply bridged by O-P-O linkages. The pyridyl nitrogen atom in 3 remains uncoordinated and is involved in the interchain hydrogen bonds. Magnetic susceptibility studies of 1 and 3 reveal that weak ferromagnetic interactions are mediated between Ni(II) centers in compound 1. For compound 3, the behavior is principally paramagnetic.  相似文献   

8.
0IntroductionRecently,thecompoundscontaining1H-1,2,4-tr-iazolegrouphaveattractedmuchinterestbecauseoftheirexhibitingsomefungicidalactivityandplantgrowthregulatingactivity犤1犦,andshowingantibacterialactivityagainstPucciniareconditeandrootsgrowthregulationforcucumber犤2犦.Also,suchcompoundsareincreasinglybeingstudiedbecauseofthecoordinationchemistryofazolesactingasligandsintransitionmetalcompounds.Asamatteroffact,thetriazolederivativeshavebeenextensivelyusedasterminalandbridgingligands,andthey…  相似文献   

9.
1 INTRODUCTION Recently, the researches on inorganic-organic hy-brid compounds represent an advanced field in mate-rial science[1]. At the molecular level, the combina-tion of two extremely different components providesan avenue to design new hybrid materials as well asthe ability to modulate properties of one or more ofthe components[2~6]. Some attractive properties, suchas efficient luminescence[2~4], ideal thermal and me-chanical stability, interesting magnetic[5], non-linearoptical[…  相似文献   

10.
The synthesis, crystal structure, and magnetic properties of two trinuclear oxo-centered carboxylate complexes are reported and discussed: [Cr3(mu3-O)(mu2-PhCOO)6(H2O)3]NO3.4H2O.2CH3OH (1) and [Cr3(mu3-O)(mu2-PhCOO)2(mu2-OCH2CH3)2(bpy)2(NCS)3] (2). For both complexes the crystal system is monoclinic, with space group C2/c for 1 and P1/n for 2. The structure of complex 1 consists of discrete trinuclear cations, associated NO3- anions, and lattice methanol and water molecules. The structure of complex 2 is built only by neutral discrete trinuclear entities. The most important feature of 2 is the unusual skeleton of the [Cr3O] core due to the lack of peripheral bridging ligands along one side of the triangular core, which is unique among the structurally characterized (mu3-oxo)trichromium(III) complexes. Magnetic measurements were performed in the 2-300 K temperature range. For complex 1, in the high-temperature region (T > 8 K), experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -2J12S1S2 - 2J13S1S3 - 2J23S2S3 (J12 = J13 = J23) with Jij = -10.1 cm(-1), g = 1.97, and TIP = 550 x 10(-6) emu mol(-1). The antisymmetric exchange interaction plays an important role in the magnetic behavior of the system, so in order to fit the experimental magnetic data at low temperature, a new magnetic model was used where this kind of interaction was also considered. The resulting fitting parameters are the following: Gzz = 0.25 cm(-1), delta = 2.5 cm(-1), and TIP = 550 x 10(-6) emu mol(-1). For complex 2, the experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -2J1(S1S2 + S1S3) - 2J2(S2S3) with J1 = -7.44 cm(-1), J2 = -51.98 cm(-1), and g = 1.99. The magnetization data allows us to deduce the ground term of S = 1/2, characteristic of equilateral triangular chromium(III) for complex 1 and S = 3/2 for complex 2, which is confirmed by EPR measurements.  相似文献   

11.
1INTRODUCTIONIntenseinterestintransition metalclusterscontinuesbecausetheyrepresentpos sibleconceptualbridgesbetweenhomogeneo...  相似文献   

12.
[Ni(CH(3)PO(3))(H(2)O)] (1) and [Ni(CH(3)-(CH(2))(17)-PO(3))(H(2)O)] (2) were synthesised by reaction of NiCl(2).6 H(2)O and the relevant phosphonic acid in water in presence of urea. The compounds were characterised by elemental and thermogravimetric analyses, UV-visible and IR spectroscopy, and their magnetic properties were studied by using a SQUID magnetometer. The crystal structure of 1 was determined "ab initio" from X-ray powder diffraction data and refined by the Rietveld method. The crystals of 1 are orthorhombic, space group Pmn2(1), with a=5.587(1), b=8.698(1), c=4.731(1) A. The compound has a hybrid, layered structure made up of alternating inorganic and organic layers along the b direction of the unit-cell. The inorganic layers consist of Ni(II) ions octahedrally coordinated by five phosphonate oxygen atoms and one oxygen atom from the water molecule. These layers are separated by bilayers of methyl groups and van der Waals contacts are established between them. A preliminary structure characterisation of compound 2 suggests the crystallisation in the orthorhombic system with the following unit-cell parameters: a=5.478(7), b=42.31(4), c=4.725(3) A. The oxidation state of the Ni ion in both compounds is +2, and the electronic configuration is d(8) (S=1), as determined from static magnetic susceptibility measurements above 50 K. Compound 1 obeys the Curie-Weiss law at temperatures above 50 K; the Curie (C) and Weiss (theta) constants were found to be 1.15 cm(3) K mol(-1) and -32 K, respectively. The negative value of theta indicates an antiferromagnetic exchange coupling between near-neighbouring Ni(II) ions. No sign of 3D antiferromagnetic long-range order is observed down to T=5 K, the lowest measured temperature. Compound 2 is paramagnetic above T=50 K, and the values of C and theta were found to be 1.25 cm(3) K mol(-1) and -24 K, respectively. Below 50 K the magnetic behavior of 2 is different from that of 1. Zero-field cooled (zfc) and field-cooled (fc) magnetisation plots do not overlap below T=21 K. The irreversible magnetisation, DeltaM(fc-zfc), obtained as a difference from fc and zfc plots starts to increase at T=20 K, on lowering the temperature, and it becomes steady at T=5 K. The presence of spontaneous magnetisation below T=20 K indicates a transition to a weak-ferromagnetic state for compound 2.  相似文献   

13.
在溶剂热体系中,以N,N-二乙基乙二胺为结构导向剂,合成了Al/P为3/4的层状磷酸铝[Al6P8O32][(C2H5)2NHCH2CH2NH3]2·[C2H5NH2CH2CH2NH2C2H5]单晶,并通过X射线单晶衍射结构分析.XRD,ICP,元素分析,差热-热重分析等手段进行了表征.该化合物属单斜晶系,P2(1)/c空间群,晶胞参数:a=0.90945(2)nm,b=1.46424(4)nm,c=1.87572(5)nm,β=102.672(2)°,Z=4.其阴离子层由AlO4四面体和PO3(=O)四面体单元交替连接构成,形成四、六、八元环拓扑结构,无机层以ABAB方式堆积,两种质子化的有机胺分子N,N-二乙基乙二胺及其重排产物N,N′-二乙基乙二胺填充在层间.用分子动力学模拟方法,考察了标题化合物中有机胺与无机层间的相互作用,讨论了这两种有机胺的共模板作用.  相似文献   

14.
在二甲亚砜(DMSO)中, 以MnCl2.2H2O和K3[Cr(Ox)3].3H2O为原料, 合成了离子型配合物[Mn(phen)2(H2O)2]2[Cr(OX)3][HOCH2CH2O].4H2O。晶体结构测定表明, 该晶体属单斜晶系, P2/c空间群。晶体学参数: a=1.0602(3),b=1.3515(3), c=2.1508(3)nm, β=102.57(2)°, V=3.008(1)nm^3, Z=2,Dc=1.49g/cm^3, F(000)=1392。最后的偏差因子R=0.067。测定了化合物的UV-Vis-NIR, IR, XPS, ESR光谱和变温磁化率, 讨论了相应的性质。  相似文献   

15.
Cleavage of the Se-Se bond in [2-{O(CH(2)CH(2))(2)NCH(2)}C(6)H(4)](2)Se(2) (1) and [2-{MeN(CH(2)CH(2))(2)NCH(2)}C(6)H(4)](2)Se(2) (2) by treatment with SO(2)Cl(2), bromine or iodine (1 : 1 molar ratio) yielded [2-{O(CH(2)CH(2))(2)NCH(2)}C(6)H(4)]SeX [X = Cl (3), Br (4), I (5)] and [2-{MeN(CH(2)CH(2))(2)NCH(2)}C(6)H(4)]SeI (6). The compounds were characterized in solution by NMR spectroscopy (1H, 13C, 15N, 77Se, 2D experiments). The solid-state molecular structures of 1-3, 4.HBr, 5 and 6 were established by single crystal X-ray diffraction. In all cases T-shaped coordination geometries, i.e. (C,N)SeSe (1, 2), (C,N)SeX (3, 5, 6; X = halogen) or CSeBr(2) (4.HBr), were found. Supramolecular associations in crystals based on hydrogen contacts are discussed.  相似文献   

16.
Cr[(H(3)N-(CH(2))(2)-PO(3))(Cl)(H(2)O)], a rare example of a polar organic-inorganic hybrid material containing Cr(2+), was prepared from CrCl(2), 2-aminoethylphosphonic acid, and urea in water and isolated as light-blue crystals. It crystallizes in the noncentrosymmetric monoclinic space group P2(1), with a = 5.249(1) A, b = 14.133(3) A, c = 5.275(1) A, and beta = 105.55(2) degrees. The inorganic layer of the hybrid network is formed by Cr(II) five-coordinated by three oxygen atoms from the phosphonates and one from the water molecule in a square pyramidal unit, whose apical position is occupied by the Cl(-) ion. Hydrogen bonds are established between the coordinating water molecule and the oxygen atoms of adjacent phosphonate ligands. The inorganic network is interspersed by ethylammonium groups, and the terminal ammonium moiety is linked to the apical Cl(-) ions through hydrogen bonds. Electrostatic interactions as well as hydrogen bonds and the coordinated chlorine atoms ensure the cohesion of the 3D structure. The lattice is polar (lack of inversion center), and this fact determines the magnetic behavior of the compound at low temperatures. The magnetic susceptibility data in the temperature range from 300 to 50 K show Curie-Weiss behavior, with C = 2.716 cm(3) K mol(-1) and the Weiss constant theta = -2.2 K. The corresponding effective magnetic moment of 4.7 mu(B) compares well with the expected value for Cr(2+) in d(4) high-spin configuration. A slight decrease of the chiT product versus T observed at temperatures below 50 K indicates nearest-neighbor antiferromagnetic exchange interactions. On cooling below T = 6 K, the magnetic susceptibility increases sharply up to a maximum at ca. 5 K and then decreases again. Below T = 6 K, hysteresis loops taken at different temperatures show that Cr[(H(3)N-(CH(2))(2)-PO(3))(Cl)(H(2)O)] behaves as a weak ferromagnet with the critical temperature T(N) at 5.5 K. The spin canting is responsible of the long-range magnetic ordering. The values of the coercive field, H(c), and of remnant magnetization, M(r), obtained from the hysteresis loop at T = 4.5 K (the lowest measured temperature) are 30 Oe and 0.08 mu(B), respectively.  相似文献   

17.
The preparation, crystal structures, and optical and magnetic properties of two new charge-transfer salts kappa-(EDDH-TTP)(3)[Cr(phen)(NCS)(4)] x 2CH(2)Cl(2) (1) and kappa(21)-(BDH-TTP)(5)[Cr(phen)(NCS)(4)](2) x 2CH(2)Cl(2) (2), where phen = 1,10- phenanthroline, EDDH-TTP = 2-(4,5-ethylenedithio-1,3-dithiol-2-ylidene)-5-(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene, and BDH-TTP = 2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene, are reported. Crystal data: (1) monoclinic P2(1)/a, a = 25.0752(5) A, b = 10.6732(3) A, c = 28.1601(6) A, beta = 95.195(2) degrees, Z = 4, R = 0.0585 for 6741 independent reflections with I > 3 sigma(I); (2) monoclinic P2(1)/a, a = 23.8275(4) A, b = 9.1015 (2) A, c = 27.0420(1) A, beta = 99.9297(8) degrees, Z = 4, R = 0.0530 for 4565 independent reflections with I > 2 sigma(I). The crystal structures for both compounds consist of alternating organic and inorganic layers. The organic layer in compound 1 is characterized as kappa-type, while the organic layer in 2 resembles the kappa-type but it contains orthogonal dimers and monomers, and it is therefore called kappa(21). Compound 1 shows metallic behavior down to low temperature. Salt 2 shows semiconductive behavior, which is explained as the result of either charge ordering owing to the kappa(21)-type structure or Peierls distortion due to the one-dimensional electronic nature. However, weak metallic behavior could be observed at 10 kbar above ca. 150 K and at 15 kbar above 170 K. The magnetic susceptibilities for both compounds show Curie-Weiss behavior, showing that the exchange interactions between the magnetic anions are weak. Polarized reflectance spectra of single crystals were measured over the spectral range from 650 to 7000 cm(-1). Moreover, absorption and diffusion reflectance spectra of powdered crystals dispersed in KBr (from 400 to 7000 cm(-1)) were recorded. Vibrational and electronic features are discussed.  相似文献   

18.
The unique wide-angle distibine, {CH2(o-C6H4CH2SbMe2)}2, has been prepared indirectly by reaction of Me2SbCl with the di-Grignard formed unexpectedly by coupling of o-C6H4(CH2MgCl)2 in concentrated thf solution, and directly by treatment of the {CH2(o-C6H4CH2MgCl)}2 with Me2SbCl. The very oxygen-sensitive distibine has been characterised by 1H and 13C{1H} NMR spectroscopy and high-resolution EIMS. Oxidation of with Br2 gives the air-stable tetrabromide {CH2(o-C6H4CH2SbMe2Br2)}2. Surprisingly, shows a very strong tendency to function as a cis-chelate, e.g. to Pt(IV) in the complex [PtMe3I], forming an 11-membered ring and providing a stable Pt(IV) stibine complex, the crystal structure of which shows the Sb-Pt-Sb angle to be 95.96(1) degrees. The yellow Pt(II) complex [PtCl2] is obtained from reaction of [PtCl2(MeCN)2] with and IR spectroscopic data and a crystal structure determination confirm the Cl ligands are mutually cis in this species. Reaction of [W(CO)4(piperidine)2] with in refluxing EtOH gives [W(CO)4], the IR spectrum of which shows four nu(CO) bands, also consistent with cis-Sb2 coordination. The cis-chelation is also confirmed by single-crystal X-ray structure determinations of two polymorphs of [W(CO)4].  相似文献   

19.
Bauer S  Müller H  Bein T  Stock N 《Inorganic chemistry》2005,44(25):9464-9470
Following the strategy of using polyfunctional phosphonic acids for the synthesis of open-framework metal phosphonates, the phosphonocarboxylic acid (H2O3PCH2)2NCH2C6H4COOH was used in the hydrothermal synthesis of new Ba phosphonates. Its decomposition led to the first open-framework barium phosphonate [Ba3(O3PCH2NH2CH2PO3)2(H2O)4].3H2O. The synthesis was also successfully performed using iminobis(methylphosphonic acid), (H2O3PCH2)2NH, as a starting material, and the synthesis was optimized to obtain as a pure material. The reaction setup as well as the pH are the dominant parameters, and only a diffusion-controlled reaction led to the desired compound. The crystal structure was solved from single-crystal data: monoclinic; C2/c; a=2328.7(2), b=1359.95(7), and c=718.62(6) pm; beta=98.732(10) degrees ; V=2249.5(3)x10(6) pm3; Z=4; R1=0.036; and wR2=0.072 (all data). The structure of [Ba3(O3PCH2NH2CH2PO3)2(H2O)4].3H2O is built up from BaO8 and BaO10 polyhedra forming BaO chains and layers, respectively. These are connected to a three-dimensional metal-oxygen-metal framework with the iminobis(methylphosphonic acid) formally coating the inner walls of the pores. The one-dimensional pores (3.6x4 A) are filled with H2O molecules that can be thermally removed. Thermogravimetric investigations and temperature-dependent X-ray powder diffraction demonstrate the stability of the crystal structure up to 240 degrees C. The uptake of N,N-dimethylformamide and H2O by dehydrated samples is demonstrated. Furthermore, IR, Raman, and 31P magic-angle-spinning NMR data are also presented.  相似文献   

20.
The reaction of cis-[Ru(NO)(CH(3)CN)(bpy)(2)](3+) (bpy = 2,2'-bipyridine) in H(2)O at room temperature proceeded to afford two new nitrosylruthenium complexes. These complexes have been identified as nitrosylruthenium complexes containing the N-bound methylcarboxyimidato ligand, cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](2+), and methylcarboxyimido acid ligand, cis-[Ru(NO)(NH=C(OH)CH(3))(bpy)(2)](3+), formed by an electrophilic reaction at the nitrile carbon of the acetonitrile coordinated to the ruthenium ion. The X-ray structure analysis on a single crystal obtained from CH(3)CN-H(2)O solution of cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](PF(6))(3) has been performed: C(22)H(20.5)N(6)O(2)P(2.5)F(15)Ru, orthorhombic, Pccn, a = 15.966(1) A, b = 31.839(1) A, c = 11.707(1) A, V = 5950.8(4) A(3), and Z = 8. The structural results revealed that the single crystal consisted of 1:1 mixture of cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](2+) and cis-[Ru(NO)(NH=C(OH)CH(3))(bpy)(2)](3+) and the structural formula of this single crystal was thus [Ru(NO)(NH=C(OH(0.5))CH(3))(bpy)(2)](PF(6))(2.5). The reaction of cis-[Ru(NO)(CH(3)CN)(bpy)(2)](3+) in dry CH(3)OH-CH(3)CN at room temperature afforded a nitrosylruthenium complex containing the methyl methylcarboxyimidate ligand, cis-[Ru(NO)(NH=C(OCH(3))CH(3))(bpy)(2)](3+). The structure has been determined by X-ray structure analysis: C(25)H(29)N(8)O(18)Cl(3)Ru, monoclinic, P2(1)/c, a = 13.129(1) A, b = 17.053(1) A, c = 15.711(1) A, beta = 90.876(5) degrees, V = 3517.3(4) A(3), and Z = 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号