首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
<正>天然产物全合成是有机化学中的重要研究领域,其持续不断发展为创新药物的发现提供了重要的保证.其中,约一半新发现的小分子药物都来源于天然产物及其衍生物[1].由于天然产物结构复杂,含量稀少且难以通过分离手段来获得稳定来源,极大地限制了天然产物在药物研发中的应用.合成方法与策略的创新,对推动天然产物全合成领域的发展起着非常关键的作用.值得注意的是,利用分子内的Pauson-Khand反应在合成具有环戊烯酮骨架的天然产物中扮演着重要角色[2].  相似文献   

2.
天然产物全合成是有机化学的重要研究方向之一,具有复杂结构和重要生理活性的天然产物及其衍生物也是药物研发的重要来源.主要介绍利用化学合成与生物合成结合的策略,实现复杂天然产物的全合成及规模制备.主要内容包括青蒿素,Spinosyn A,Myceliothernophin E和Equisetin的化学与生物合成研究.  相似文献   

3.
杨震 《化学进展》2009,21(1):47-54
天然产物骨架的复杂性和丰富的官能团化赋予了天然产物类化合物独有的生物学活性,因此天然产物作为药物研究的先导化合物有其无法替代的独特性质,比如紫杉醇、红霉素和利福霉素帮助科学家们理解重要的生物过程。以往化学家对天然产物独有情钟,但仅仅以合成天然产物本身为最终目的。今天,化学家们开始利用传统的合成方法来制备结构多样性的类天然产物化合物。这种利用合成手段制备的小分子化合物在生物学的基础研究和药物研究中将起到关键的作用。  相似文献   

4.
前言     
天然有机化学主要由天然产物化学和天然产物的合成研究两部分构成,是有机化学的重要组成部分.近些年来,随着我国经济的发展,国家在科学研究方面投入的不断增加,研究条件和平台建设的大为改善,使我国在天然有机化学方面得到了快速的发展,取得了许多令人瞩目的成就.我国是生物资源极为丰富的国家,仅药用植物就有万余种,且有数千年民间用药经验,为其发现具生物活性的、结构新颖的先导化合物、为创新药物等方面开拓了广阔的研发前景.部分研究领域已处于国际先进水平,得到国际学术界高度评价.天然产物的合成研究一直是有机化学学科中最令人关注的领域.  相似文献   

5.
刘钢  李裕林  南发俊 《化学进展》2006,18(6):734-742
天然产物是药物发现中先导化合物的重要来源.高通量筛选技术的发展和近年来化学生物学研究的深入,对拓展天然产物与活性相关的"化学空间"提出了新要求.用多样性导向合成方法建立骨架多样、构造复杂、立体化学多样性的"类天然产物"化合物库进行生物学相关研究,并以此为基础发现药物先导化合物正在成为一种趋势.在此过程中,发展具有立体选择性和区域选择性,能够广泛应用于多种底物的有机化学反应起着关键作用.  相似文献   

6.
张斌  周其忠  陈仁尔  蒋华江 《有机化学》2012,32(9):1653-1665
吡啶是药物和天然产物的重要骨架,是医药化工的重要的中间体.介绍了过渡金属催化的吡啶在2位、3位或4位发生的烷基化、烯基化和芳基化等C—H键活化反应,还概括了吡啶的官能化在药物和天然产物合成中的应用.  相似文献   

7.
<正>Angew. Chem. Int. Ed. 2019, 58, 6362~6365如何实现天然产物的高效合成一直是天然产物全合成研究领域的重要科学问题. Speradine C是从海洋真菌中分离得到的高氧化态天然产物,具有6/5/6/5/5/6六环刚性笼状骨架及6个手性中心,极具合成挑战性.北京大学药学院、天然药物及仿生药物国家重点实验室贾彦兴课题组通过仿生的[3+2]环加成反应构建C/D环, N-氯代丁二酰亚胺  相似文献   

8.
叔胺是多种药物分子和天然产物的重要结构组成部分.可见光促进叔胺C—H官能团化反应近年来受到了广泛的关注,为药物分子、生物碱类天然产物的合成提供了便利.基于光氧化还原催化策略,可见光能够诱导叔胺通过单电子转移(SET)过程产生的亚胺正离子或氨基碳自由基中间体,这些中间体能够参与多种类型的有机反应,实现叔胺C—H官能团化.对近年来光氧化还原催化叔胺C—H研究进行了分类和综述.  相似文献   

9.
多环型xanthone类天然产物是一类具有高度氧化态和六环骨架结构的天然产物.目前分离得到的此类化合物主要来源于放线菌.由于这类化合物具有结构特独、广泛的抗细菌活性、一定程度的抗真菌活性以及良好的抗肿瘤活性,吸引了大量有机合成和药物化学等领域学者的关注.近十年来,相关的生物和化学合成以及药物化学研究报道明显增多,主要总结了多环型xanthone类天然产物的合成研究进展.  相似文献   

10.
20 0 3年 7月是我国著名有机化学家 ,药物化学家和天然产物结构专家 ,中国科学院院士梁晓天教授八十华诞 .值此庆祝梁晓天教授八十华诞之际 ,《化学学报》特进行梁晓天教授学术论文专辑征稿工作 .  梁晓天教授主要研究领域涉及物理有机、光谱学 ,结构研究 ,化学反应与结构修饰 ,药物与天然产物合成等诸多方面 .50年代初梁教授从美国回国后便投身于祖国的中草药化学成分结构研究事业 ,率先应用波谱学方法于天然产物结构测定研究中 ,并出版专著在全国范围内推广普及 .他所领导的研究组完成了许多比较复杂的天然产物化学结构研究 (如一叶秋碱…  相似文献   

11.
Despite the vastness of Eastern Indonesian Waters (EIW), no review has been done on the status of drug discovery research based on marine organisms from this area. The aim of this paper is to briefly discuss the challenges and perspectives on drug discovery research based on marine organisms in these indigenous waters. The emphasis is on the last 20 year period (1993 to 2013). Research activities completed during this period suggest that marine organisms from EIW could be utilized as an important natural resource for future drug discovery and development. However, lack of facilities, as well as competent human resources, significantly hinder progress on drug discovery research. More in-depth study especially on deep-sea natural products needs to be carried out to solidify the research on the potential for marine organisms from EIW to contribute to the future of drug discovery.  相似文献   

12.
临床使用的现代药物超过50%都来自于天然产物,它们不仅能够通过阻止细胞周期进程、抑制癌细胞存活信号通路以及调节免疫细胞等多种生物途径来阻止肿瘤生长及其进程,而且对正常组织表现出较低的毒性。虽然以顺铂为代表的金属抗肿瘤药物广泛用于临床,但是它们存在严重的耐药性和毒副作用,包括肾毒性、神经毒性等。因此,利用天然产物中的优势来改造铂类配合物,有望开发出新型铂类抗癌药物以克服铂药的缺陷。另一方面,芳基金属配合物因其良好的水溶性和对正常组织的低毒性受到了广泛关注,将天然产物与芳基金属配合物相结合,也为开发高效低毒的新型抗癌药物提供了更多可能。结合天然产物和金属各自优势开发基于天然产物的金属配合物作为抗癌剂已成为研究热点,开辟了抗癌的新途径。本文对已经报道的有关天然产物的铂类和芳基金属配合物的研究及作用机理进行了较为全面的综述,并对该领域的未来发展进行了展望。  相似文献   

13.
Antibiotic development based on natural products has faced a long lasting decline since the 1970s, while both the speed and the extent of antimicrobial resistance (AMR) development have been severely underestimated. The discovery of antimicrobial natural products of bacterial and fungal origin featuring new chemistry and previously unknown mode of actions is increasingly challenged by rediscovery issues. Natural products that are abundantly produced by the corresponding wild type organisms often featuring strong UV signals have been extensively characterized, especially the ones produced by extensively screened microbial genera such as streptomycetes. Purely synthetic chemistry approaches aiming to replace the declining supply from natural products as starting materials to develop novel antibiotics largely failed to provide significant numbers of antibiotic drug leads. To cope with this fundamental issue, microbial natural products science is being transformed from a ‘grind-and-find’ study to an integrated approach based on bacterial genomics and metabolomics. Novel technologies in instrumental analytics are increasingly employed to lower detection limits and expand the space of detectable substance classes, while broadening the scope of accessible and potentially bioactive natural products. Furthermore, the almost exponential increase in publicly available bacterial genome data has shown that the biosynthetic potential of the investigated strains by far exceeds the amount of detected metabolites. This can be judged by the discrepancy between the number of biosynthetic gene clusters (BGC) encoded in the genome of each microbial strain and the number of secondary metabolites actually detected, even when considering the increased sensitivity provided by novel analytical instrumentation. In silico annotation tools for biosynthetic gene cluster classification and analysis allow fast prioritization in BGC-to-compound workflows, which is highly important to be able to process the enormous underlying data volumes. BGC prioritization is currently accompanied by novel molecular biology-based approaches to access the so-called orphan BGCs not yet correlated with a secondary metabolite. Integration of metabolomics, in silico genomics and molecular biology approaches into the mainstream of natural product research will critically influence future success and impact the natural product field in pharmaceutical, nutritional and agrochemical applications and especially in anti-infective research.

Antimicrobial resistance is a major public concern and novel antibiotics are largely based on natural products. We summarize recent analytical and genome based technological developments that gain increasing importance in the natural products field.  相似文献   

14.
Synthesis of biologically active compounds, including natural products and pharmaceutical agents, is an important and interesting research area since the large structural diversity and complexity of bioactive compounds make them an important source of leads and scaffolds in drug discovery and development. Many structurally and also biologically interesting compounds, including marine natural products, have been isolated from nature and have also been prepared on the basis of a computational design for the purpose of developing medicinal chemistry. In order to obtain a wide variety of derivatives of biologically active compounds from the viewpoint of medicinal chemistry, it is essential to establish efficient synthetic procedures for desired targets. Newly developed reactions should also be used for efficient synthesis of desired compounds. Thus, recent progress in the synthesis of biologically active compounds by focusing on the development of new reactions is summarized in this review article.  相似文献   

15.
Natural products,as major resources for drug discovery historically,are gaining more attentions recently due to the advancement in genomic sequencing and other technologies,which makes them attractive and amenable to drug candidate screening.Collecting and mining the bioactivity information of natural products are extremely important for accelerating drug development process by reducing cost.Lately,a number of publicly accessible databases have been established to facilitate the access to the chemical biology data for small molecules including natural products.Thus,it is imperative for scientists in related fields to exploit these resources in order to expedite their researches on natural products as drug leads/candidates for disease treatment.PubChem,as a public database,contains large amounts of natural products associated with bioactivity data.In this review,we introduce the information system provided at PubChem,and systematically describe the applications for a set of PubChem web services for rapid data retrieval,analysis,and downloading of natural products.We hope this work can serve as a starting point for the researchers to perform data mining on natural products using PubChem.  相似文献   

16.
To create a drug, nature's blueprints often have to be improved through semisynthesis or total synthesis (chemical postevolution). Selected contributions from industrial and academic groups highlight the arduous but rewarding path from natural products to drugs. Principle modification types for natural products are discussed herein, such as decoration, substitution, and degradation. The biological, chemical, and socioeconomic environments of antibacterial research are dealt with in context. Natural products, many from soil organisms, have provided the majority of lead structures for marketed anti-infectives. Surprisingly, numerous "old" classes of antibacterial natural products have never been intensively explored by medicinal chemists. Nevertheless, research on antibacterial natural products is flagging. Apparently, the "old fashioned" natural products no longer fit into modern drug discovery. The handling of natural products is cumbersome, requiring nonstandardized workflows and extended timelines. Revisiting natural products with modern chemistry and target-finding tools from biology (reversed genomics) is one option for their revival.  相似文献   

17.
The vancomycin family of glycopeptide antibiotics has been inspiring research in the field of synthetic chemistry since the 1980s. Recent studies have moved away from the focus of total synthesis into new territory: the design and evaluation of novel compounds based on the natural products which exhibit improved antibacterial activity. Modern approaches to drug synthesis draw together investigations into the nature of the binding environment, and innovative synthetic methodologies which provide solutions to the challenging structural features and stereochemistry associated with this intriguing class of compounds. New analogues, derivatives and dimers of the natural products, as well as recent successes in the total synthesis of the complestatins are described in this tutorial review, covering literature from the last decade.  相似文献   

18.
Marine natural products have long played an important role in natural products chemistry and drug discovery. Mirroring the rich variety and complicated interactions of the marine environment, the substances isolated from sea creatures tend to be incredibly diverse in both molecular structure and biological activity. The natural products isolated from the polyps of marine zoanthids are no exception. The zoanthamine alkaloids, the first of which were isolated over 20 years ago, are of particular interest to the synthetic community because they feature a novel structural framework and exhibit a broad range of biological activities. In this Review, we summarize the major contributions to understanding the zoanthamine natural products with regard to their isolation and structure determination, as well as studies on their biological activity and total synthesis.  相似文献   

19.
刘冰  武艺  陈宁  许颖  季宇彬 《化学通报》2021,84(10):1040-1047
结构多样的芳香类化合物一直被用作新药发现的线索或主要来源。通过对类药物天然产物进行异戊烯基化结构修饰,能有效提高芳香类化合物生物活性及生物利用度,为新药研究与开发提供简便高效的方法。本文综述了近年来芳香类化合物异戊烯基化的各种方法,以为今后研究提供参考。  相似文献   

20.
Natural products (or secondary metabolites) remain as the most important source for discovery of new and potential drug molecules. With high resolution data of their structures, and the advancement of synthesis possibilities, analysis of the natural products based on their specific structural features is valuable to those entering the field. In this tutorial review we attempt such an analysis indicating the salient features of the structural classes with examples of the synthesis of each one of them. As the particular class of natural products, we have chosen polyketides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号