首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
光学活性芳基醇化合物是一类重要的手性砌块,可用于合成多种手性药物,其制备技术研究是近年来的研究热点。与传统的化学制备方法相比,生物催化方法由于具有选择性高、反应条件温和以及环境危害少等优点更具吸引力。通过生物催化不对称还原芳基酮是合成对映体纯芳基醇最有效的方法之一。本文综述了生物催化不对称还原制备手性芳基醇的研究进展,重点介绍了不同形式的生物催化剂应用于生物不对称还原的研究现状,包括微生物细胞、酶、重组工程菌以及固定化细胞等,概述了有机溶剂、表面活性剂和离子液体等底物助溶剂对生物不对称催化的影响,并对生物催化制备对映体纯芳基醇的研究前景进行了展望。  相似文献   

2.
王强  顾庆  游书力 《化学学报》2019,77(8):690-704
在手性分子中,轴手性化合物占据着非常重要的地位.从原子和步骤经济性方面考虑,利用不对称碳-氢官能团化反应构建轴手性化合物是最简洁高效的方法.随着过渡金属催化的不对称碳-氢键官能团化领域的逐步发展,利用该策略来构建轴手性联芳基化合物的研究成果也不断涌现.本文综述了通过过渡金属钯、铑和铱催化的不对称碳-氢键官能团化反应合成轴手性联芳基化合物的最新进展.此外,还介绍了利用这些方法合成多种轴手性配体及其催化的不对称反应,以及这些方法在天然产物合成中的应用.  相似文献   

3.
手性环氧化物在合成上具有重要的应用价值。近年来,制取这些手性合成物的合成方法取得了很大的发展。文章重点讨论了生物催化手性前体烯烃不对称合成光学活性环氧化合物的发展状况。  相似文献   

4.
王才  周锋  周剑 《有机化学》2020,(10):3065-3077
尽管铜催化的叠氮和炔烃环加成(CuAAC)反应作为点击化学的核心反应得到广泛应用,然而其不对称催化的研究却相对滞后.反应本身虽然不产生手性元素,但是能够通过对具有潜手性的炔烃或叠氮化合物的去对称化以及外消旋叠氮或炔烃化合物的动力学拆分,来不对称催化合成手性叠氮、炔烃和三氮唑类具有重要应用价值的化合物.自2013年首例高对映选择性的CuAAC反应被报道以来,相关研究有了重要进展,并被成功用于中心手性、轴手性和平面手性的构建.概述了不对称CuAAC反应的研究进展,讨论其面临的发展难题和未来的发展空间.  相似文献   

5.
在不对称催化反应中,平面手性二茂铁化合物是一类非常高效的手性配体和催化剂.从原子和步骤经济性方面考虑,与传统方法相比不对称碳氢键直接官能团化反应是构建平面手性二茂铁最简洁有效的方法.综述了铜、钯、铑、铱、金和铂等过渡金属催化的不对称碳氢键官能团化反应合成平面手性二茂铁化合物的最新进展.此外,还介绍了利用这些方法合成多种平面手性二茂铁配体和催化剂及其不对称催化反应.  相似文献   

6.
含氮配位基团的二茂铁衍生物的环钯化合物在有机合成、催化等领或有着重要的应用,尽管目前已经合成了从多的二茂铁环钯化合物,但其中绝大部分为外消旋体。二茂铁是引入平面手性的理想骨架,通过经典的拆分方法或利用光学纯的二茂铁配体进行不对称环钯化反应可得到具有平面手性的二茂铁环钯化合物,研究发现,利用平面手性的二茂铁环钯化合物与金属汞嘲、锡等的金属转移反应可方便地制备平面构型保持的手性环汞、环锡化合物;还可将它们用于外消旋氨基酸的手性拆分及催化不对称Claisen重排反应(ee值最高可达95%)。  相似文献   

7.
牛凡凡  聂昌军  陈勇  孙小玲 《化学进展》2014,26(12):1942-1961
手性环氧化合物是有机合成的重要中间体,由于三元杂环的张力使其很容易与各种亲核试剂作用,通过官能团转化反应,可以从环氧化物制备一系列不同结构的手性化合物.烯烃的不对称环氧化反应可以使潜手性的烯烃转化为带有手性碳的环氧化合物,在医药、农药、香料等精细化学品的合成上具有非常重要的意义.非官能化烯烃经手性催化剂诱导的不对称环氧化反应是获得光学纯手性化合物的有效方法.这些手性催化剂包括生物酶、金属卟啉、金属Salen配合物以及有机小分子催化剂.本文综述了这几种催化剂催化的非官能化烯烃不对称催化环氧化反应近几年的研究进展,介绍了催化剂的催化机理,并就其发展趋势提出了构想.  相似文献   

8.
1,3-二羰基化合物的不对称烯丙基烷基化反应是构筑手性中心的重要方法.综述了过渡金属催化1,3-二羰基化合物不对称烯丙基烷基化反应的进展.按照烯丙基化试剂的不同,主要讨论了以烯丙基酯类、烯丙醇、烯丙基卤化物、烯烃、联烯作为烯丙基化试剂或其他烯丙基化方法合成手性α-烯丙基取代的1,3-二羰基化合物.  相似文献   

9.
手性羰基化合物是天然产物和药物中的重要结构单元,也是反应性最为丰富的重要合成中间体.过渡金属催化不对称酰基化反应是构建该重要结构单元的高效方法之一,近些年来,具有独特催化活性的丰产金属镍催化剂也被广泛应用于不对称羰基化合物的合成.综述了近些年来镍催化不对称酰基化反应领域的新研究进展,主要包括镍催化不对称烷基-酰基偶联反应、烯烃不对称氢酰基化反应以及烯烃不对称酰基官能团化反应等.  相似文献   

10.
邢爱萍 《分子催化》2011,25(2):180-190
获得对映异构体纯的手性化合物在药物、农用化学品、香料等领域愈来愈引起了科学界和工业界的广泛关注.不对称催化反应作为获得光学纯化合物的一种有效手段,由于其手性增殖的突出优势而特别引人注目.不对称催化一般通过含有手性配体  相似文献   

11.
B. Baskar  N.G. Pandian  K. Priya  Anju Chadha   《Tetrahedron》2005,61(52):12296-12306
Candida parapsilosis ATCC 7330 was found to be an efficient biocatalyst for the deracemisation of aryl α-hydroxy esters (65–85% yield and 90–99% ee). A variety of aryl and aryl substituted α-hydroxy esters were synthesized to reflect steric and electronic effects on biocatalytic deracemisation. The mechanism of this biocatalytic deracemisation was found to be stereoinversion.  相似文献   

12.
Deracemisation of racemic or scalemic conglomerates of intrinsically chiral compounds appears to be a promising method of chiral resolution. By combining the established methods of asymmetric synthesis and the physical process of crystal growth, we were able to achieve a complete deracemisation (with 100 % ee) of an asymmetric Mannich product conglomerate—vigorously stirred in its saturated solution—from a starting enantiomeric excess value of 15.8 % in the presence of pyrrolidine (8 mol %) as an achiral catalyst for the CC bond‐forming reaction. Strong activation of this deracemisation process was observed on mild isothermal heating to only 40 °C, resulting in dramatic acceleration by a factor of about 20 with respect to the results obtained at room temperature. Despite the fact that the racemisation half‐life time of the nearly enantiopure Mannich product (with 99 % ee) in the homogenous solution at the reaction temperature is eight days, the deracemisation process took only hours in a small‐scale experiment. This apparent paradox is explained by a proposed rapid enantiomerisation at the crystal/solution interface, which was corroborated by a 13C labelling experiment that confirmed the involvement of rapid enantiomerisation. Frequent monitoring of the solution‐phase ee of the slowly racemising compound further revealed that the minor enantiomer dominated in solution, supporting an explanation based on a kinetic model. A generalisation of the process of “aymmetric autocatalysis” (resulting in automultiplication of chiral products in homogenous media) to encompass heterogeneous systems is also suggested.  相似文献   

13.
《Tetrahedron: Asymmetry》2014,25(12):865-922
This review discusses methods for the metallo-, organo- and biocatalytic asymmetric synthesis of chiral organophosphorus compounds with many applications in stereoselective synthesis with references to updated literature reports as well as the author’s original research. Asymmetric catalytic hydrogenation and reduction with chiral organometallic complexes, together with actively used asymmetric organocatalytic versions of various reactions enable us to synthesize chiral organophosphonates and phosphinates with high enantioselectivity and purity. Asymmetric catalysis is also an effective tool to realize some classic reactions of phosphorus chemistry in a stereospecific manner.  相似文献   

14.
Characteristic features and modern trends in the biocatalytic synthesis of chiral compounds have been discussed. New processes of biocatalytic synthesis use at least two enzymes. Whole cells of recombinant strains are utilized as biocatalysts, and the complete set of target enzymes can be expressed in a single cell.  相似文献   

15.
Directed evolution has been employed to generate new enzymes for the deracemisation of chiral amines.  相似文献   

16.
It has been known for many decades that chiral compounds can be obtained by stereospecific biocatalytic reduction. Further significant methodological developments in this field have, however, only been made during the past ten years; they include the application of previously unused microorganisms and electron donors, the discovery of additional substrates for the known reductases, the development of methods for regenerating reduced pyridine nucleotides, and the discovery of new reductases which were sought for specific preparative purposes. Many chiral compounds can now be synthesized by microbial hydrogenation using H2 and hydrogenase-containing microorganisms as well as by electromicrobial or electroenzymatic reduction. In the two latter methods, anaerobic or aerobic organisms are supplied with electrons from electrochemically reduced, artificial mediators, e.g., methyl viologen. Reductases that do not require pyridine nucleotides and can accept electrons directly from reduced viologens are especially useful. Two examples of this type of enzyme are described which are of preparative interest. Many cells contain methyl viologen-dependent NAD(P) reductases, a large number of which have still not been characterized. A productivity number is proposed which allows different methods of bioconversion with microorganisms to be compared. The productivity numbers of compounds synthesized by the methods described in this review are often 10- to 100-fold higher than those of substances obtained by conventional techniques.  相似文献   

17.
《Tetrahedron: Asymmetry》2001,12(7):1025-1034
Prochiral aryl and dialkyl ketones were enantioselectively reduced to the corresponding alcohols using whole cells of the white-rot fungus Merulius tremellosus ono991 as a biocatalytic reduction system and ruthenium(II)–amino alcohol and iridium(I)–amino sulfide complexes as metal catalysts in asymmetric transfer hydrogenation. Comparison of the results showed that the corresponding chiral alcohols could be obtained with moderate to high enantioselectivities (e.e.s of up to 98%). The biocatalytic and transfer hydrogenation approaches appear to be complementary. The biocatalytic approach is the most suitable for the enantioselective reduction of chloro-substituted (aryl) ketones, whereas in the reduction of α,β-unsaturated compounds excellent results were obtained using the catalytic hydrogenation protocol.  相似文献   

18.
手性是自然界的基本属性之一,不同的手性单体具有不同的生理活性,将手性化合物有效的分离具有十分重要的意义.色谱法和膜分离法在拆分手性化合物中得到了越来越广泛的应用,也是我们课题组采用的主要方法.就近几年来拆分手性化合物的一些方法和研究成果本文进行综述,并对今后手性拆分技术的发展方向进行了展望.  相似文献   

19.
马大友 《化学进展》2008,20(11):1687-1693
手性β-羟基酸及其衍生物是应用化工和有机合成的关键中间体, 生物催化的不对称合成方法以其绿色环保, 简洁高效及高立体选择性已然成为一个新兴的研究热点。本文较系统的总结了生物催化的β-羟基酸及其衍生物不对称合成研究工作,重点介绍了脂肪酶,腈代谢酶及还原酶在合成手性β-羟基酸衍生物中的应用。最后,对今后生物催化不对称合成β-羟基酸的发展方向做一展望。  相似文献   

20.
The scope for biocatalytic modification of non-native carvone derivatives for speciality intermediates has hitherto been limited. Additionally, caprolactones are important feedstocks with diverse applications in the polymer industry and new non-native terpenone-derived biocatalytic caprolactone syntheses are thus of potential value for industrial biocatalytic materials applications. Biocatalytic reduction of synthetic analogues of R-(−)-carvone with additional substituents at C3 or C6, or both C3 and C6, using three types of OYEs (OYE2, PETNR and OYE3) shows significant impact of both regio-substitution and the substrate diastereomer. Bioreduction of (−)-carvone derivatives substituted with a Me and/or OH group at C6 is highly dependent on the diastereomer of the substrate. Derivatives bearing C6 substituents larger than methyl moieties are not substrates. Computer docking studies of PETNR with both (6S)-Me and (6R)-Me substituted (−)-carvone provides a model consistent with the outcomes of bioconversion. The products of bioreduction were efficiently biotransformed by the Baeyer–Villiger monooxygenase (BVase) CHMO_Phi1 to afford novel trisubstituted lactones with complete regioselectivity to provide a new biocatalytic entry to these chiral caprolactones. This provides both new non-native polymerization feedstock chemicals, but also with enhanced efficiency and selectivity over native (+)-dihydrocarvone Baeyer–Villigerase expansion. Optimum enzymatic reactions were scaled up to 60–100 mg, demonstrating the utility for preparative biocatalytic synthesis of both new synthetic scaffold-modified dihydrocarvones and efficient biocatalytic entry to new chiral caprolactones, which are potential single-isomer chiral polymer feedstocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号