首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
直接甲醇燃料电池催化活性层的优化   总被引:1,自引:0,他引:1  
张军  李磊  许莉  王宇新 《电化学》2002,8(3):315-320
本文考察了直接甲醇燃料电池 (DMFC)不同催化剂载量的膜电极性能 .对催化剂层中Nafion含量进行优化 ,研究了Nafion含量对电池的阻抗的影响 .实验发现 :DMFC适宜的阳极Pt_Ru/C载量为Pt 4mg/cm2 、Nafion质量百分含量为 2 1.4 % ;高电流密度下 ,阴极Pt/C载量为Pt4mg/cm2 、Nafion质量百分含量为 2 1.4 %时 ,有较好的放电性能 ,继续增加Nafion含量 ,阴极的欧姆极化和浓差极化增大 ,电池性能下降  相似文献   

2.
采用廉价的多孔聚四氟乙烯(PTFE)膜作为基底, 用少量的Nafion与PTFE膜复合可制备低成本的质子膜. 但疏水性的PTFE膜与亲水性的Nafion膜结合性不佳. 基于此, 本文对疏水性的PTFE膜材料表面进行设计, 先采用丙烯酸对疏水性的PTFE膜表面进行亲水性改性, 再喷涂亲水性Nafion膜, 完成低成本PTFE/PAA/Nafion膜的制备. 实验结果表明, 改性前的PTFE膜材料水接触角为150°, 改性后的膜接触角变为55.6°, 亲水性大幅上升, 膜的机械强度和尺寸稳定性(断裂强度为25.2 MPa, 80 ℃下的溶胀率为11.9%)均优于Nafion117膜, 而 Nafion用量则节省了60%. PTFE/PAA/Nafion膜具有高质子导通率(80 ℃下达到131.9 mS/cm), 接近于Nafion117膜, 最大功率密度可以达到404.2 mW/cm2.  相似文献   

3.
采用辉光放电等离子体聚合方法 ,以 C2 H4 和 NH3 为单体 ,在 Nafion TM膜表面沉积一层含氨基及酰氨基的类聚乙烯阴离子交换膜 ,提高了 Nafion TM膜对阳离子的选择性 ,同时不显著增加膜电阻 .由 SEM确定该等离子体聚合膜厚约 0 .5μm,用红外光谱及 X光电子能谱表征膜结构 .采用四电极法测量膜电阻 ,膜对质子的选择性由 Cu2 + 的迁移数 t Cu表征 ,用二室隔膜装置 (0 .2 5mol/L Cu Cl2 -0 .5mol/L HCl|等离子体处理膜 |1 mol/L HCl)测量 t Cu. O2 等离子体预处理 Nafion TM膜有利于沉积膜在 Nafion TM膜上的沉积并与 Nafion TM膜紧密结合 .经改性后的 Nafion TM膜电阻值仍然很小 ,在 1 mol/L HCl溶液中电阻小于 0 .5Ω· cm2  相似文献   

4.
徐洪峰  董建华  侯向理 《电化学》2006,12(4):434-438
利用离子交换及随后的氢还原,将单质银负载在质子交换膜(Nafion)孔道内.TEM、XRD表征载银Nafion膜的结构,电化学极限电流法测定氧在载银Nafion膜内的扩散系数.结果表明,因银晶颗粒大于Nafion孔道直径,致使Nafion孔道有所扩张;氧在载银Nafion膜内的扩散系数是无银Nafion膜的4倍.据此,把银引入质子交换膜燃料电池空气阴极催化剂表面的Nafion薄层,则电池的性能在高电流密度下有明显的提高,显示了银对该电极内氧传递的促进作用.  相似文献   

5.
质子交换膜燃料电池Nafion/PTFE复合膜的研究   总被引:5,自引:0,他引:5  
在聚四氟乙烯(PTFE)多孔膜内浸入Nafion树脂,制成Nafion/PTFE复合膜用于质子交换膜燃料电池(PEMFC).该复合膜的Nafion含量在50%左右,在干态和湿态时的拉伸强度及水化/脱水过程中,其尺寸稳定性比Nafion均有所提高.在80 ℃,H2/O2压力为0.2/0.2 MPa条件下,用25 μm厚复合膜组装的电池性能优于Nafion117膜组装电池的性能.测量了复合膜的O2渗透率和含水量并与Nafion膜的性能作了比较.  相似文献   

6.
燃料电池是一种将燃料反应的化学能转化为电能的装置,可分为氢氧质子交换膜燃料电池(PEMFCs)、直接甲醇燃料电池(DMFCs)和直接甲酸燃料电池等.与 PEMFCs相比, DMFCs以甲醇为燃料,燃料的储存运输和电池操作运行具有较高的安全性,所以近年来受到人们的广泛关注.
  膜电极组件(MEA)是 DMFCs的核心部分,由气体扩散层(GDL)、催化层(CL)和质子交换膜(PEM)三部分组成. GDL用于提高电池传质能力,并同时作为 MEA的集流体. PEM主要用于隔离燃料和氧气,进行质子传导. CL是 MEA中的主要组成部分,为电化学反应提供场所.
  催化层由催化剂,质子传输介质和电子传输介质组成.通常,阳极催化剂采用 PtRu/C,阴极采用 Pt/C,质子传输介质为全氟磺酸树脂,如 Nafion. CL的结构对电池性能有直接的影响,因此人们对 CL的结构进行了详细的研究,并通过调节 CL亲水性能、梯度催化层的结构设计等优化其结构.研究表明,当 CL中 Nafion含量为33 wt.%, PEMFCs具有最佳的电池性能. DMFCs与 PEMFCs对 MEA要求不同,其阴极更容易发生水淹现象.本文结合非接触式三维光学轮廓仪、接触角测试系统和电化学测试对阴极不同 Nafion含量的膜电极进行了表面形貌、亲水性、循环伏安和 DMFC性能测试.
  本文利用喷涂法制备了 GDE,然后与 Nafion115热压形成 MEA.由三维表面形貌图可以看出,随着催化层中 Nafion含量的增加, GDE表面的粗糙度变大,尤其是 N35和 N45.理论上,表面粗糙有利于 Pt的暴露和传质扩散,但是其电池性能并未与粗糙度呈现出正相关的关系,因为 Nafion含量高于35 wt.%, Pt被 Nafion过度包裹,抑制了 O2至催化剂表面的传输,且随着 Nafion含量由15 wt.%增加至45 wt.%,其 GDE表面的接触角由166.8o减至143.1o,说明 CL的亲水性增强,易导致阴极产生的水无法及时排出,从而造成阴极水淹现象.
  从不同 Nafion含量制备 MEA的 CV图可以看出,随着 Nafion含量的增加, Pt的电化学活性面积(ESA)增加.当 Nafion含量较少时, Nafion无法对全部 Pt纳米粒子(NPs)形成包覆或无法形成连贯的质子传输通道,从而导致大部分的 Pt NPs催化活性较低变为无效 Pt.而有效 Pt NPs要求与连贯的质子传输通道相连接.当 Nafion含量高于35 wt.%时,其 ESA基本保持不变,因为 Pt载量一定,从而限制了 ESA,此时达到该载量条件下的极限 ESA.但是电池极化曲线表明,30 wt.% Nafion含量的 MEA具有最佳的电池性能.因为有效 Pt NPs不一定是高效的,当他们全部被 Nafion包裹后, O2只能依靠溶解在 Nafion中才可以到达催化剂表面,从而阻碍传质.只有 Pt NPs表面包裹和暴露面积达到一定比例时才变得高效.所以当 Nafion含量低于30 wt.%时,主要由质子传输通道导致的有效 Pt NPs较少;当 Nafion含量高于30 wt.%时,出现 Nafion过度包裹 Pt NPs,阻碍 O2传质.因此, Nafion含量30 wt.%时, Pt的包裹面积和裸露面积达到所研究的最佳状态.  相似文献   

7.
制作双催化层结构的PEMFC电极.该双催化层由含有Nafion的内催化层、无Nafion的外催化层组成.循环伏安测试表明,未与Nafion直接接触的外催化层Pt/C催化剂也参与发生在"Pt/Nafion"界面氢原子的吸脱附反应和Pt表面含氧粒子的电化学氧化还原.当电势扫描速率较低时,未与Nafion直接接触的外层Pt/C催化剂,其对氢脱附电流的贡献和直接与Nafion接触的内催化层的Pt/C催化剂大致相当.以双催化层电极作PEMFC阴极,单电池(PEMFC)极化曲线测试表明,其阴极外催化层能明显地提高该单电池在活化极化区的输出性能.进一步证明了PEMFC阴极外催化层不与Nafion直接接触的Pt/C催化剂可通过其表面吸附含氧粒子的表面扩散参与发生在"Pt/Nafion"界面氧的电化学还原反应.上述实验为设计PEMFC电极提供了一定的新思路.  相似文献   

8.
燃料电池是一种将燃料反应的化学能转化为电能的装置,可分为氢氧质子交换膜燃料电池(PEMFCs)、直接甲醇燃料电池(DMFCs)和直接甲酸燃料电池等.与PEMFCs相比,DMFCs以甲醇为燃料,燃料的储存运输和电池操作运行具有较高的安全性,所以近年来受到人们的广泛关注.膜电极组件(MEA)是DMFCs的核心部分,由气体扩散层(GDL)、催化层(CL)和质子交换膜(PEM)三部分组成.GDL用于提高电池传质能力,并同时作为MEA的集流体.PEM主要用于隔离燃料和氧气,进行质子传导.CL是MEA中的主要组成部分,为电化学反应提供场所.催化层由催化剂,质子传输介质和电子传输介质组成.通常,阳极催化剂采用Pt Ru/C,阴极采用Pt/C,质子传输介质为全氟磺酸树脂,如Nafion.CL的结构对电池性能有直接的影响,因此人们对CL的结构进行了详细的研究,并通过调节CL亲水性能、梯度催化层的结构设计等优化其结构.研究表明,当CL中Nafion含量为33 wt.%,PEMFCs具有最佳的电池性能.DMFCs与PEMFCs对MEA要求不同,其阴极更容易发生水淹现象.本文结合非接触式三维光学轮廓仪、接触角测试系统和电化学测试对阴极不同Nafion含量的膜电极进行了表面形貌、亲水性、循环伏安和DMFC性能测试.本文利用喷涂法制备了GDE,然后与Nafion115热压形成MEA.由三维表面形貌图可以看出,随着催化层中Nafion含量的增加,GDE表面的粗糙度变大,尤其是N35和N45.理论上,表面粗糙有利于Pt的暴露和传质扩散,但是其电池性能并未与粗糙度呈现出正相关的关系,因为Nafion含量高于35 wt.%,Pt被Nafion过度包裹,抑制了O2至催化剂表面的传输,且随着Nafion含量由15 wt.%增加至45 wt.%,其GDE表面的接触角由166.8o减至143.1o,说明CL的亲水性增强,易导致阴极产生的水无法及时排出,从而造成阴极水淹现象.从不同Nafion含量制备MEA的CV图可以看出,随着Nafion含量的增加,Pt的电化学活性面积(ESA)增加.当Nafion含量较少时,Nafion无法对全部Pt纳米粒子(NPs)形成包覆或无法形成连贯的质子传输通道,从而导致大部分的Pt NPs催化活性较低变为无效Pt.而有效Pt NPs要求与连贯的质子传输通道相连接.当Nafion含量高于35 wt.%时,其ESA基本保持不变,因为Pt载量一定,从而限制了ESA,此时达到该载量条件下的极限ESA.但是电池极化曲线表明,30wt.%Nafion含量的MEA具有最佳的电池性能.因为有效Pt NPs不一定是高效的,当他们全部被Nafion包裹后,O2只能依靠溶解在Nafion中才可以到达催化剂表面,从而阻碍传质.只有Pt NPs表面包裹和暴露面积达到一定比例时才变得高效.所以当Nafion含量低于30 wt.%时,主要由质子传输通道导致的有效Pt NPs较少;当Nafion含量高于30 wt.%时,出现Nafion过度包裹Pt NPs,阻碍O2传质.因此,Nafion含量30 wt.%时,Pt的包裹面积和裸露面积达到所研究的最佳状态.  相似文献   

9.
采用直接喷涂法将催化剂涂覆在质子交换膜上形成CCM(catalyst coated membrane),CCM与碳纸扩散层组成膜电极用于质子交换膜燃料电池.制备CCM的混合液由质量分数20%的Pt/C催化剂、质量分数5%的Nafion溶液、有机溶剂和水组成.不同的有机溶剂(乙醇、异丙醇和叔丁醇)、有机溶剂的含量、溶剂的...  相似文献   

10.
罗昪  周芬  潘牧 《高等学校化学学报》2022,43(4):20210853-86
层级多孔碳作为氧还原铂基催化剂载体的选择之一, 简单的旋转圆盘电极(RDE)验证此类催化剂具有较高的氧还原活性, 但几乎都缺少膜电极(MEA)性能验证, 实用性无法保证. 本文设计制备了基于聚苯胺的层级多孔碳(NHPC)载铂催化剂(Pt/NHPC850), 研究了其氧还原活性、 MEA质子传输和氧传输特性. RDE测试研究表明, Pt/NHPC850催化剂在低I/C(离聚物与碳载体质量比)时的面积活性低于实心碳载铂催化剂(Pt/XC-72), 但当I/C增大到与膜电极中一致时, 由于Nafion树脂对Pt催化剂的毒化作用增强, 其面积活性反而优于 Pt/XC-72. Pt/NHPC850催化剂的高Pt分散性及其优异的抗Nafion毒化性能, 使其在I/C为0.8时的质量活性为Pt/XC-72催化剂的1.34倍. MEA质子传输研究表明, 即使在高加湿条件下, Pt/NHPC850质子电阻率仍高达72.6 mΩ·cm2, 为Pt/XC-72的3倍. Pt/NHPC850制备的膜电极极化曲线在500 mA/cm2电流密度下性能迅速下降, Pt/NHPC850的氧增益电压达到144.4 mV, 比Pt/XC-72高56.7 mV. 表明Pt/NHPC850膜电极的质子传输和氧传输性能较差. 对比Pt/NHPC850催化剂的RDE和MEA的测试结果, 说明以层级多孔碳为载体的铂碳催化剂虽然耐Nafion毒化能力提高, 但是质子和氧气的氧传输性较差, 此类层级多孔碳还需进一步优化其结构, 才有可能满足低铂质子交换膜燃料电池(PEMFC)的应用需求.  相似文献   

11.
《Electroanalysis》2004,16(16):1318-1323
The electrochemical behavior of NO2 at Au/Nafion, Pt/Nafion and Pt‐Au/Nafion electrodes was investigated by using electrochemical and SEM methods, respectively. It was found that the Pt‐Au/Nafion electrode showed higher electrocatalytic activity than Pt/Nafion and Au/Nafion electrodes. The net current density of Au/Nafion electrode decayed significantly during the reaction, though it showed high initial value. Pt/Nafion and Pt‐Au/Nafion electrodes, on the contrary, showed good stability. A quantitative determination of NO2 concentration was carried out at Pt‐Au/Nafion electrode and a satisfactory linear relationship was found for the NO2 concentration in the range of 0–100 ppm.  相似文献   

12.
A multilayer composite membrane was prepared by reinforcing sulfonated polysulfone (SPSU) with porous polytetrafluoroethylene (PTFE), and adding Pt/SiO2–Nafion® membranes on both sides of the SPSU/PTFE membrane to self‐humidify and protect the inside membrane. The ex situ Fenton test and open circuit voltage (OCV) accelerated test show that the composite membrane has better stability than the initial membrane because of the protection of the outside Pt/SiO2–Nafion layers. The composite membrane has similar performance to that of NRE‐212 under the fully humidified condition and better performance than NRE‐212 without humidifying. The self‐humidifying membrane shows great potential for use in low humidifying conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
采用不同聚合度的季铵阳离子聚合物作为修饰离子,对纳米Pt颗粒的合成及其在全氟磺酸膜(Nafion)上的静电自组装行为进行了研究,结合Nafion膜电导率的变化对膜-颗粒自组装机理进行了分析。结果表明:自组装过程中Nafion膜电导率的下降总是比Pt组装量的上升先达到平衡,表明膜-颗粒体系(MPS)的静电自组装是一个先由大量的小阳离子占据空位,然后由离子修饰的大颗粒(纳米Pt)取代的过程;改变修饰离子的聚合度同时会引起组装液中游离修饰离子的数目的变化,从而对电导率的衰减速度和组装第二阶段的脱附-组装平衡造成影响,因此随着修饰离子聚合度的增加,导电率达到平衡的时间增加,组装量达到平衡的时间减少。  相似文献   

14.
An extensive study has been conducted on the proton exchange membrane fuel cells (PEMFCs) with reducing Pt loading. This is commonly achieved by developing methods to increase the utilization of the platinum in the catalyst layer of the electrodes. In this paper, a novel process of the catalyst layers was introduced and investigated. A mixture of carbon powder and Nafion solution was sprayed on the glassy carbon electrode (GCE) to form a thin carbon layer. Then Pt particles were deposited on the surface by reducing hexachloroplatinic (IV) acid hexahydrate with methanoic acid. SEM images showed a continuous Pt gradient profile among the thickness direction of the catalytic layer by the novel method. The Pt nanowires grown are in the size of 3 nm (diameter)×10 nm (length) by high solution TEM image. The novel catalyst layer was characterized by cyclic voltammetry (CV) and scanning electron microscope (SEM) as compared with commercial Pt/C black and Pt catalyst layer obtained from sputtering. The results showed that the platinum nanoparticles deposited on the carbon powder were highly utilized as they directly faced the gas diffusion layer and offered easy access to reactants (oxygen or hydrogen).  相似文献   

15.
Monolayers of Pt nanoparticles of diameters of 2-3 nm with a high crystallinity were successfully anchored onto exfoliated nanoclay surfaces using a novel chemical vapor deposition process. Chemical bonding of Pt to the oxygen on the clay surface ensured the stability of the Pt nanoparticles, and hence, no leaching of Pt particles was observed after a prolonged ultrasonication and a rigorous mechanical agitation of Pt-clay in the Nafion solution during the membrane casting process. Systematic analysis using WAXD and TEM showed that the recasting process produced a new self-humidifying exfoliated Pt-clay/Nafion nanocomposite membrane with a high crystallinity and proton conductivity. In situ water production for humidification of the dry membranes without any external humidification was characterized by a combined water uptake and FTIR analysis of the as-prepared membrane after a single cell testing without using electrodes. The power density at 0.5 V of a single cell made of a Pt-clay/Nafion nanocomposite membrane was 723 mW/cm2, which is 170% higher than that made of a commercial Nafion 112 membrane of similar thickness. No compromise in mechanical properties was observed.  相似文献   

16.
Owing to the scarcity of platinum, it is of high importance to develop electrodes with low platinum metal loading and to thereby improve the utilization of Pt for the commercialization of proton-exchange membrane fuel cells (PEMFCs). In comparison to conventional high-platinum electrodes, the thickness of the catalyst layer (CL) is thinner and the interatomic Pt spacing is larger for the low-Pt loading electrodes. The distribution of electrolyte ionomer and the electrode morphology, which are strongly influenced by the solvents used in the fabrication process, are therefore increasingly important factors for achieving high performance in the membrane electrode assembly (MEA). In this work, different solvents with various dielectric constants and evaporation rates were used to prepare the inks for low-Pt loading cathode (0.1 mg·cm-2) fabrication. First, the inks were fabricated by dispersing the catalyst and ionomer in different solvents which were then coated onto carbon paper to prepare the gas diffusion electrodes. The anode and cathode electrodes were then hot-pressed together with the Nafion membrane to produce the MEAs. The results showed a mixture of isopropanol-water (4:1) yielded the best-performing MEA during the single-cell tests compared to the other solvents tested. In order to elucidate the relationship between the performance of MEAs and the solvents, the structure and the surface morphology of the CL and the distribution of Nafion ionomer in the CL was characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A comparison of the SEM and TEM images of representative samples indicated that the best performing electrode had a much improved homogeneity in the surface morphology as well as the dispersion of catalyst and ionomer. This was because of the moderate evaporation rate and better dispersion, caused by the increased hydrogen bonding and high dielectric constant, respectively. The results from dynamic light scattering (DLS) showed that the size of the catalyst and ionomer aggregates are influenced by the solvents. It is suggested that larger aggregates might help the formation of holes in the CL for gas diffusion and water removal, with the optimum size found to be around 400–800 nm. In conclusion, the MEA fabricated from the isopropanol-water solvent exhibited a significantly increased power density (1.79 W·cm-2), and the utilization of Pt was increased to approximately 0.047 mg·W-1, which is among the best-performing fuel cells reported to date.  相似文献   

17.
聚合物电解质膜燃料电池薄电极制备技术的研究   总被引:4,自引:0,他引:4  
为降低聚合物电解质膜燃料电池 (PEMFC)电极中铂的载量 ,本文建立一种新的薄电极制备技术 (TEFT) ,制备了表面平滑、颗粒分布均匀的低铂载量电极 .结果表明当电极的铂载量为 1mg/cm2 ,用Nafion 117膜作电解质时 ,电池的最大功率密度达 0 30W·cm-2 .系统地考察了阴极中不同PTFE和Nafion含量对PEMFC性能的影响 .  相似文献   

18.
In order to reduce the cost of membrane used in vanadium redox flow battery (VRB) system while keeping its chemical stability, Nafion/sulfonated poly(ether ether ketone) (SPEEK) layered composite membrane (N/S membrane) consisting of a thin layer of recast Nafion membrane and a layer of SPEEK membrane were prepared by chemical crosslink the sulfonic acid groups of different ionomer membranes. Scanning electron microscopy (SEM) and IR spectra analysis of the membrane showed that Nafion layer was successfully deposited on the SPEEK membrane surface and an integral layered membrane structure was formed. The area resistance and permeability of vanadium ions of membrane were also measured. It was found that N/S membrane have a very low permeability of vanadium ions accompanied by a little higher area resistance compared with Nafion membrane. As a result, the VRB single cell with N/S membrane exhibited higher coulombic efficiency and lower voltage efficiency compared with VRB single cell with Nafion membrane. Although N/S membrane delivered relatively lower energy efficiency compared with Nafion membrane, its good chemical stability and low cost make it a suitable substitute for Nafion membrane used in VRB system.  相似文献   

19.
采用化学还原的方法成功地合成了Nafion聚离子修饰的纳米Pt颗粒,平均粒径为~4nm;由于表面缺电子的特性,纳米Pt粒子与Nafion高分子长链上的-SO3^-基团有较强的结合,使粒子随-SO3^的存在状态而分散,在水溶液中呈现与离子团簇相似的分散状态。FTIR显示Pt颗粒存在表面原子暴露在修饰离子之外,因此,这种粒子在具有功能结构的催化领域有着很好的应用前景;合成过程中反应速率随Nafion含量的降低、pH的增加而增大。  相似文献   

20.
铂纳米线(Pt NWs)由于其独特的结构特点,比商业Pt/C具有更高的氧还原反应(ORR)比活性。在本工作中,我们将预先制备好的铂纳米颗粒(Pt NPs)引入到碳基体中,用于诱导生长Pt NWs,获得了均匀分布Pt NWs的阴极。通过改变Pt NP载量(0~0.015 mg·cm-2)和Pt NP来源(不同Pt含量的Pt/C)研究了所制备阴极的结构和性能。用扫描电镜对阴极表面进行了表征,并用透射电镜和X射线衍射分析了Pt NW的形貌和晶体结构。在单电池中分别进行了极化曲线和循环伏安曲线测试。当Pt NP来源为40% Pt/C且其载量为0.005 mg·cm-2时,制备的Pt NW阴极具有最佳的单电池性能和最大的电化学表面积(ECSA)。最后,提出了预制Pt NP影响Pt NWs分布的可能机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号