首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
快离子导体是二次高能电池及其他全固体电化学器件研制与开发的重要材料,常规方法由于存在原材料选择受限以及原料对容器侵蚀等技术问题,致使一些高性能快离子导体的制备受到很大限制。为此,人们将目标转移到不需加热、在室温条件下即可实现这一材料制备的机械化学合成法。本文总结了近年来利用这种方法在制备快离子导体方面取得的一些最新研究成果。  相似文献   

2.
Nowadays there exists a large variety of ion sensors based on polymeric or solid-state membranes that can be used in a sensor array format in many analytical applications. This review aims at providing a critical overview of the distinct approaches that were developed to build and use potentiometric sensor arrays based on different transduction principles, such as classical ion-selective electrodes (ISEs) with polymer or solid-state membranes, solid-contact electrodes (SCE) including coated wire electrodes (CWE), ion-sensitive field-effect transistors (ISFETs) and light addressable potentiometric sensors (LAPS). Analysing latest publications on potentiometric sensor arrays development and applications certain problems are outlined and trends are discussed.  相似文献   

3.
《中国化学快报》2021,32(12):3882-3885
The development of solid-state smart materials, in particular those showing photoresponsive luminescence, is highly desirable for their cutting edge applications in displays, sensors, data-storage, and anti-counterfeiting. However, to achieve both excellent photoresponsive performance and bright luminescence in solid state remains challenge. Herein, we integrate a novel photochromic fluorophore YL into flexible polymer chains, thereby enabling the resultant polymer PYL with reversible photoisomerization upon aggregation. Remarkably, the polymer PYL possesses excellent photochromic properties and aggregation-induced emission (AIE) activity, which can be attributed to the photoactive YL moiety. Upon light exposure, its film exhibits reversibly off-to-on fluorescent modulation with quick response, high emission efficiency and signal contrast, sharply different from the weak emission in solution. The novel photoresponsive AIE polymer with invisible/visible color and fluorescence transformation allows for advanced anti-counterfeiting applications. This work provides an efficient platform for constructing solid-state photocontrollable luminescent materials.  相似文献   

4.
The synthesis and characterization of a novel polymethacylate polymer with covalently linked Al(III)-tetraphenylporphyrin (Al(III)-TPP) groups is reported. The new polymer is examined as a potential macromolecular ionophore for the preparation of polymeric membrane-based potentiometric and optical fluoride selective sensors. To prepare the polymer, an Al(III) porphyrin monomer modified with a methacrylate functionality is synthesized, allowing insertion into a polymethacrylate block copolymer (methyl methacrylate and decyl methacrylate) backbone. The resulting polymer can then be incorporated, along with appropriate additives, into conventional plasticized poly(vinyl chloride) films for testing electrochemical and optical fluoride response properties. The covalent attachment of the Al(III)-TPP ionophore to the copolymer matrix provides potentiometric sensors that exhibit significant selectivity for fluoride ion with extended lifetimes (compared to ion-selective membrane electrodes formulated with conventional free Al(III)-TPP structure). However, quite surprisingly, the attachment of the ionophore to the polymer does not eliminate the interaction of Al(III)-TPP structures to form dimeric species within the membrane phase in the presence of fluoride ion. Such interactions are confirmed by UV/visible spectroscopy of the blended polymeric films. Use of the new polymer-Al(III)-TPP conjugates to prepare optical fluoride sensors by co-incorporating a lipophilic pH indicator (4′,5′-dibromofluorescein octadecyl ester; ETH7075) is also examined and the resulting optical sensing films are shown to exhibit excellent selectivity for fluoride, with the potential for prolonged operational lifetime.  相似文献   

5.
Novel solid-state sensors for biomedically important polyions (i.e., heparin and protamine) that exhibit significantly enhanced initial EMF stability are prepared by incorporation of lipophilic silver-calixarene complexes along with the required ion-exchangers within polymeric films. A dithioether of tertiary butyl calix[4]arene together with its silver complex are added to the polyion sensing membranes which are deposited on a silver-epoxy conductor of a solid-state transducer. The silver-complex serves as a reversible electron transfer agent between the organic polymer film and the underlying solid-state conductor, resulting in highly reproducible starting EMF values and improved initial signal stability. This approach is further employed to devise a heparin sensing cartridge for blood measurements based on a novel differential measurement mode. One sensor responds to heparin, while the second identical solid-state sensor serves as a pseudo reference electrode with all heparin present in the sample within this half-cell complexed by the addition of excess protamine. The cartridges are evaluated by monitoring heparin response in spiked dog blood using poly(vinyl chloride) (PVC) blends and fluorinated silicone rubber (Dow Corning RTV 730) films containing appropriate levels of ion-exchanger and Ag+-calixarene/free calixarene additives.  相似文献   

6.
Satrijo A  Kooi SE  Swager TM 《Macromolecules》2007,40(25):8833-8841
Degradation experiments and model studies suggested that the longer lived green fluorescence from an aggregated poly(p-phenylene ethynylene) (PPE) was due to the presence of highly emissive, low-energy, anthryl defect sites rather than the emissive conjugated polymer excimers proposed in a previous report. After elucidating the origin of the green fluorescence, additional anthryl units were purposely incorporated into the polymer to enhance the blue-to-green fluorescence color change that accompanied polymer aggregation. The improved color contrast from this anthryl-doped conjugated polymer led to the development of crude solution-state and solid-state sensors, which, upon exposure to water, exhibited a visually noticeable blue-to-green fluorescence color change.  相似文献   

7.
Examinations of a number of possible electroactive substances for use in both liquid membrane and solid-state ion-selective electrodes were carried out. Liquid membrane electrodes incorporating organometallic salts of lead and thallium were considered as constituents of sulphate, chromate, carbonate and nitrate responsive sensors. No practically useful device was, however, found. Several electrically semiconducting metal-phthalocyanines, metal-tetracyanoethylene (TCNE) polymers and metal-coordination polymers were also synthesized and investigated with solid-state electrode constructional techniques. Metal-phthalocyanine electrodes were found to be responsive to anions rather than to cations and some anion selectivity was observed. Metal-TCNE polymer electrodes showed response to metal ions identical with those contained in the polymer, and some good selectivities, operational activity ranges and response times were found. Electrodes made from coordination polymers incorporating copper showed a limited response to copper ions whilst inclusion of cadmium and iron(III) in the polymer matrix produced an electrode with anion reponse and slight anion selectivity.  相似文献   

8.
在NaOH/C_2H_5OH/DMF液中,实现了水溶性阴离子荧光共轭聚合物聚-[5-甲氧基-2-(3-磺酰化丙氧基)-1,4-苯撑乙烯](MPS-PPV)单体的快速聚合并提高了聚合产率.通过改变溶液中NaOH的浓度,实现了聚合物荧光发射波长的调控.对聚合物进行了元素分析、红外光谱以及分子量的表征,并探讨了不同聚合条件下得到的MPS-PPV的荧光和紫外光谱变化.研究了过氧化氢对MPS-PPV荧光发射波长及强度的影响,据此可测定过氧化氢.与单纯依赖荧光强度变化的过氧化氢检测法比,此法具有更高的选择性,为基于荧光聚合物的新型传感器研制提供了新思路.  相似文献   

9.
Smart polymers are special kinds of polymeric molecules that respond to external stimuli. We have developed a novel smart polymer designed to sequentially disassemble into its building blocks upon initiation by a triggering event at the polymer head. The polymer structure is based on a polyurethane backbone that disassembles through a domino-like, 1,6-elimination and decarboxylation reactions. We synthesized a self-immolative polymer that amplifies a single cleavage reaction into multiple release of fluorogenic molecules and confirmed the head-to-tail disassembly concept. These polymers can be used to prepare highly sensitive molecular sensors with large signal-to-noise ratios. The sensors should be useful for the detection of a wide range of biological and chemical activities through use of the appropriate trigger at the polymer head.  相似文献   

10.
At present, synthesis of carbon nanotubes (CNTs) is normally conducted on a vapor-to-solid interface at ca. 500-3500℃ via various vapor phase methods, such as are discharge, laser ablation, catalytic pyrolysis and chemical vapor deposition, etc.1-2 Recently, channel materials (such as channels of alumina and of AlPO4-5 zeolite) 3 have been utilized as solid-state templates to grow CNTs inside the channel. Here we described a novel method to prepare the carbon nanotubes based on the decomposition of C2H2 gas on the Co-Ni catalyst anchored by polymer complex on the porous A12O3 matrix. The degree of graphitization of synthesized CNTs and catalysts are of great interest.  相似文献   

11.
Poly(2-vinylnaphthalene) was synthesized in the solid-state by ball milling a mixture of the corresponding monomer, a Cu-based catalyst, and an activated haloalkane as the polymerization initiator. Various reaction conditions, including milling time, milling frequency and added reductant to accelerate the polymerization were optimized. Monomer conversion and the evolution of polymer molecular weight were monitored over time using 1H NMR spectroscopy and size exclusion chromatography, respectively, and linear correlations were observed. While the polymer molecular weight was effectively tuned by changing the initial monomer-to-initiator ratio, the experimentally measured values were found to be lower than their theoretical values. The difference was attributed to premature mechanical decomposition and modeled to accurately account for the decrement. Random copolymers of two monomers with orthogonal solubilities, sodium styrene sulfonate and 2-vinylnaphthalene, were also synthesized in the solid-state. Inspection of the data revealed that the solid-state polymerization reaction was controlled, followed a mechanism similar to that described for solution-state atom transfer radical polymerizations, and may be used to prepare polymers that are inaccessible via solution-state methods.  相似文献   

12.
A new and effective process has been developed for fabrication of novel cage-like multihollow polymer particles by using sulfonated polystyrene (SP) particles as the templates, with heptane as the phase separation agent, in an ethanol/water medium. The ratio of water/ethanol and the heating temperature play important roles in the formation of these multihollow particles. It was found that the cage-like polymer particles could be obtained when the ratio of ethanol/water is 5:5 (w/w), with a temperature above 50?°C. After a detailed study, the formation mechanism was proposed based on an SP swollen (ethanol and heptane penetrating process) and phase separation process. This new method for fabricating the cage-like multihollow polymer particles has a great meaning not only on confirming the formation mechanism, but also on providing an effective way to prepare the special hollow core/porous shell polymer particles, which could have wide range of potential applications, such as catalysts, sensors, and drug release.  相似文献   

13.
A new solid-state pH sensor is developed using neutral poly(3-cyclohexyl thiophene) assembled over a Pt disk electrode. The new sensor is developed following two different approaches; 1) the neutral poly(3-cyclohexyl thiophene) dissolved in chloroform and subsequent coating on to a Pt disk electrode; 2) the neutral polymer is incorporated into plasticized poly(vinyl chloride) matrix membrane. In both cases the polymer modified electrode is sensitive to pH and a reversible super Nernstian behavior is observed. The typical response of the pH sensor and its reversibility are reported. The polymer coated electrode is subsequently used to construct an all solid-state urea sensor. The construction of this new urea sensor involves the following two major steps; a) 20 µL of urease solution (40 mg /mL) is allowed to assemble overnight at 4 °C over neutral poly (3-cyclohexyl thiophene) modified electrode; b) an organically modified sol-gel layer is allowed to form over the urease adsorbed polymer modified electrode. The new solid-state urea sensor provides excellent reproducibility of the measurements and is stable for 3 months when stored at 4 °C under dry condition. The typical response of the solid-state urea sensor and the calibration plot of urea analysis are reported.  相似文献   

14.
Thin films of polystyrene (PS), poly(methyl methacrylate) (PMMA) and polystyrene-polyacrylonitrile copolymer (PS-AN), containing various embedded transition-metal complexes, have been studied by FTIR microscopy. The spatial distributions of the transition-metal carbonyl complexes throughout the thin organic polymer films have been determined by a two-dimensional IR mapping procedure. The spectral variations observed in the distribution of the metal carbonyls throughout the different polymer films are discussed. The IR data show that the technique used to prepare the organometallic-embedded thin films (viz. freeze-drying of solutions followed by hot mechanical pressing of the residues) does in general lead to homogeneous films which may eventually find industrial application, e.g. as membrane sensors for small molecules.  相似文献   

15.
寇玉霞  万锕俊 《化学进展》2008,20(5):729-739
一氧化氮(NO)是一种很好的血小板黏附或活化的抑制剂,同时也是很有效的抗平滑肌细胞增生剂。可释放NO的聚合物材料显示出较好的抗血栓形成及抑制细胞增生的性能。本文综述了可释放NO聚合物材料的制备方法及其近年来在生物医疗器械中的应用。用来制备可释放NO聚合物材料的NO供体主要有两大类,一类是亲核NO供体N-diazeniumdiolates,另一类是S-亚硝基硫醇(RENOs)。制备可释放NO聚合物材料的方法主要有3种:(1)通过物理掺杂的方式将小分子的NO供体分散到聚合物材料中;(2)对聚合物材料的填料微粒进行化学改性,得到可释放NO的填料粒子,再将其填充到聚合物材料中;(3)通过共价键将可释放NO的基团连接到聚合物主链及侧链上。所得到的可释放NO聚合物材料在血管内传感器、体外血液循环电路和体内移植血管等生物医疗器械中有广泛的应用。  相似文献   

16.
In this work, the polymeric precursor method was used to prepare low-cost solid-state sensors for pH determination based on iridium oxide as the main pH sensitive material. The iridium content was reduced with addition of TiO2, forming the binary system IrOx–TiO2, whose electroanalytical properties were evaluated in comparison with a commercial glass pH electrode. The minimum iridium content which gave suitable results was 30 mol%, and the electrode presented Nernstian and fast response in the pH range from 1 to 13, with no hysteresis effect observed. Besides, the electrode showed high selectivity in the presence of alkali ions as Li+, Na+ or K+. The amount of iridium in the prepared electrodes was very small (<0.1 mg), supporting the efficiency of this method on the simple preparation of functional low-cost pH electrodes.  相似文献   

17.
A series of Li4Ti5O12 materials were prepared by three different methods: solvothermal, sol-gel, and solid-state reaction methods. Phase composition, morphology, and particle sizes of the samples were studied by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). Electrochemical properties of the samples were investigated by charge-discharge tests. It is demonstrated that both sol-gel and solid-state reaction methods provided good control over the chemical composition and microstructure of the active material, in which sol-gel method yielded a fine Li4Ti5O12 spinel having an initial specific capacity of 146 mAh g-1 and low capacity fade during cycling. Comparatively, the solid-state method is simple and promising to prepare Li4Ti5O12 for commercial applications.  相似文献   

18.
Poly(ethylene oxide) (PEO) is a key material in solid polymer electrolytes, biomaterials, drug delivery devices, and sensors. Through the use of hydrogen bonds, layer-by-layer (LBL) assemblies allow for the incorporation of PEO in a controllable tunable thin film, but little is known about the bulk properties of LBL thin films because they are often tightly bound to the substrate of assembly. The construction technique involves alternately exposing a substrate to a hydrogen-bond-donating polymer (poly(acrylic acid)) and a hydrogen-bond-accepting polymer (PEO) in solution, producing mechanically stable interdigitated layers of PEO and poly(acrylic acid) (PAA). Here, we introduce a new method of LBL film isolation using low-energy surfaces that facilitate the removal of substantial mass and area of the film, allowing, for the first time, the thermal and mechanical characterization that was previously difficult or impossible to perform. To further understand the morphology of the nanoscale blend, the glass transition is measured as a function of assembly pH via differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The resulting trends give clues as to how the morphology and composition of a hydrogen-bonded composite film evolve as a function of pH. We also demonstrate that LBL films of PEO and PAA behave as flexible elastomeric blends at ambient conditions and allow for nanoscale control of thickness and film composition. Furthermore, we show that the crystallization of PEO is fully suppressed in these composite assemblies, a fact that proves advantageous for applications such as ultrathin hydrogels, membranes, and solid-state polymer electrolytes.  相似文献   

19.
Conjugation is not a prerequisite for a polymer to be conductive. A polymer must have at least one double bond in the repeat to become conductive. Interaction with a dopant (e.g., electron acceptor) causes transfer of an electron from the double bond to the dopant creating a hole at the double bond site. Electrical conduction occurs via intersite hopping of holes. Various spectroscopic methods (FTIR, optical absorption, solid-state 13C NMR, etc.) along with electrical measurements have been used to elucidate the mechanism of conduction in specific nonconjugated conductive polymers. Examples of these polymers include 1,4-polyisoprene which has one double bond and three single bonds in the repeat. The conductivity of polyisoprene increases 100 billion times upon doping with iodine to a maximum value of 10 S/m. Polyisoprene (natural rubber) is used nonconjugated conductive polymers have a wide range of applications in antistatics, various sensors and optoelectronics.  相似文献   

20.
将在溶液中表现出优良非线性光学和光限幅性能的铟酞菁及其二聚物嵌入到非光学活性的聚甲基丙烯酸甲酯(PMMA)中, 用传统的旋转涂膜法制备得到具有较高光学质量的复合物薄膜, 用开孔Z-扫描方法在532 nm 处研究了复合物薄膜材料的线性光学和非线性光学性能. 结果表明, 无论是铟酞菁单体还是轴向氧桥联的铟酞菁二聚物, 其PMMA复合材料的光限幅性能均显著优于相应的酞菁分子在溶液中的光限幅性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号