首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
The ultra fine (<200 nm) inorganic solids (BS) were separated from bitumen which was washed by toluene and centrifugated at 2000 rpm. The result of PAS FTIR and image of TEM showed that the structure of BS particles was smiliar to that of kaolinite clay. On the surface of BS, both toluene insoluble organic matter and structural OH group are detected at the same time.The surface characteristics imparted a bi-wettable nature to the BS. As a result, the BS is able to stabilize fine water emulsion in the bitumen phase. The organic matter associated with BS is a possible factor of the fouling on catalyst and equipment.  相似文献   

2.
Equilibrium structures and infrared spectra of four typical molecular models of coal have been studied by density functional calculations. Combining theoretical calculations on the coal models with experimental FT-IR spectra of selected low rank perhydrous coals, a plausible molecular representation for this kind of coals was proposed, and its predicted IR spectra reasonably match the experimental observation. Calculations indicate that the cleavage of the C-C bridge bond for the coal structures considered here occurs at about 540 ℃ and the C-O ether bridge bond may break under temperature ranging from 500 to 600 ℃ for the aryl-CH2-O-CH2-aryl ether bond or from 200 to 300 ℃ for the aryl-CH2-O-aryl ether bond, showing remarkable effect of the local structural environment. The coal model containing the carboxyl group may release CO2 at about 300 ℃ through the decarboxylation with a barrier of 69 kcal/mol.  相似文献   

3.
The effect of Ultra-violet light on the structure and motion of the polyvinyl alcohol (PVA) chains was studied by IH NMR, spin-lattice relaxation and IR spectroscopy. The results indicated that with the increase of irradiation time, the intensity of the polymer hydroxyl proton peaks decreased and finally vanished, which suggested the self-condensation between the hydroxyl groups proceeded. No methyl proton peaks appeared in the spectra after irradiation shows that there is no cleavage of polymer chain. The longer the irradiation time is, the wider the proton peak of the residual water of the solvent is and it shifted toward low field. This result implies that the hydrogen bonds formed between the polymer and the residual water. The absorption peak of hydroxyl group of the polymer moves toward the lower wave number in the IR spectrum that showed the existence of the hydrogen bonds between the PVA macromolecules.  相似文献   

4.
Atomistic detailed hydration structures of poly(vinyl methyl ether)(PVME) have been investigated by molecular dynamics simulations under 300 K at various concentrations. Both radial distribution functions and the distance distributions between donors and acceptors in hydrogen bonds show that the hydrogen bonds between the polymer and water are shorter by 0.005 nm than those between water molecules. The Quasi-hydrogen bonds take only 7.2% of the van der Waals interaction pairs. It was found the hydrogen bonds are not evenly distributed along the polymer chain,and there still exists a significant amount(10%) of ether oxygen atoms that are not hydrogen bonded to water at a concentration as low as 3.3%. This shows that in polymer solutions close contacts occur not only between polymer chains but also between chain segments within the polymer,which leads to inefficient contacts between ether oxygen atoms and water molecules. Variation of the quasi-hydrogen bonds with the concentration is similar to that of hydrogen bonds,but the ratio of the repeat units forming quasi-hydrogen bonds to those forming hydrogen bonds approaches 0.2. A transition was found in the demixing enthalpy at around 30% measured by dynamic testing differential scanning calorimetry(DTDSC) for aqueous solutions of a mono-dispersed low molecular weight PVME,which can be related to the transition of the fractions of hydrogen bonds and quasi-hydrogen bonds at ~27%. The transition of the fractions of hydrogen bonds and quasi-hydrogen bonds at ~27% can be used to explain the demixing enthalpy transition at 30% at a molecular scale. In addition,at the concentration of 86%,each ether oxygen atom bonded with water is assigned 1.56 water molecules on average,and 'free' water molecules emerge at the concentration of around 54%.  相似文献   

5.
Studies of the density and the excess molar volume of ethylene glycol (EG)-water mixtures were carried out to illustrate the hydrogen bonding interactions of EG with water at different temperatures. The re-sults suggest that a likely complex of 3 ethylene glycol molecules bonding with 4 water molecules in an ethylene glycol-water mixture (EGW) is formed at the maximal excess molar volume,which displays stronger absorption capabilities for SO2 when the concentration of SO2 reaches 400×10?6 (volume ratio) in the gas phase. Meanwhile,FTIR and UV spectra of EGWs were recorded at various EG concentra-tions to display the hydrogen bonding interactions of EG with water. The FTIR spectra show that the stretching vibrational band of hydroxyl in the EGWs shifts to a lower frequency and the bending vibra-tional band of water shifts to a higher frequency with increasing the EG concentration,respectively. Furthermore,the UV spectra show that the electron transferring band of the hydroxyl oxygen in EG shows red shift with increasing the EG concentration. The frequency shifts in FTIR spectra and the shifts of absorption bands in UV absorption spectra of EGWs are interpreted as the strong hydrogen bonding interactions of the hydrogen atoms in water with the hydroxyl oxygen atoms of EG.  相似文献   

6.
施文芳 《高分子科学》2011,29(6):670-683
A series of hyperbranched polyurethane-benzyltetrazoles(H-PBTZs) with different linkage structures were synthesized via the polycondensation of hexamethylenediisocyanate as an A2 type monomer with(4-(1H-tetrazol-5- yl)benzyl)-diethanolamine(TBDEA) as a BB’2 type monomer in the absence of catalyst at different temperatures.The FTIR, and 13C and 1H-NMR spectroscopy were used to characterize the molecular structures of TBDEA and H-PBTZs as well as the counterpart linear polyurethane-benzyltetrazole(L-PBTZ).The molecular composition was determined by the reaction selectivity that the isocyanate group reacted with the hydroxyl group in diethanolamine segment or the active hydrogen atom on tetrazole ring.Raising reaction temperature was propitious to the reaction of isocyanate group with the active hydrogen atom on tetrazole ring.The degrees of branching(DB) for H-PBTZs obtained from the 1H-NMR spectra increased with raising reaction temperature.The wider molecular weight distribution of 1.7-2.9 for H-PBTZs was obtained via GPC analysis.TGA results showed that H-PBTZs had high thermal stability compared with L-PBTZ.  相似文献   

7.
高岭石/聚丙烯酰胺插层复合物的制备与表征   总被引:11,自引:0,他引:11  
The kaolinite-polyacrylamide intercalation compound was prepared first by the displacement reaction of the kaolinite-formamide intercalation precursor with 30% acrylamide ethanol solution, and then the polymerization under 140℃ for 15h with the catalysis of dibenzoyl peroxide. The XRD analyses showed that the basal spacings of kaolinite-acrylamide intercalation compound and kaolinite-polyacrylamide compound were 1.135nm and 1.144nm respectively. The kaolinite-polyacrylamide compound was able to resist to 30-min washing with water, but the kaolinite-acrylamide compound was unstable during washing. FT-IR proved that the hydrogen bonds were formed between kaolinite Si-O group and polyacrylamide NH group and between kaolinite inner surface hydroxyl and polyacrylamide C=O group, and that parts of NH group keyed into the kaolinite ditrigonal hole. TG and DTG analysis proved that kaolinite-polyacrylamide was stable under 350℃. A net weight loss of 16.63% between 370℃~500℃ is due to the removal of intercalated polyacrylamide from the interlamellar space of kaolinite. These results clearly indicate that acrylamide has been intercalated into the layers of kaolinite and was polymerized in-situ.Based on the TG data, the formula of the kaolinite-polyacrylamide intercalation compound, Al2Si2O5(OH)4?CH2CHCONH2?0.736, can be calculated.  相似文献   

8.
Sulphonated polystyrene ethylene butylene polystyrene(SPSEBS)prepared with 35%sulphonation was found to be highly elastic and enlarged up to 300%-400%of its initial length.It absorbed over 110%of water by weight.A major drawback of this membrane is its poor mechanical properties which are not adequate for use as polymer electrolytes in fuel cells.To overcome this,SPSEBS was blended with poly(vinylidene fluoride)(PVDF),a hydrophobic polymer.The blend membranes showed better mechanical properties than the base polymer.The effect of PVDF content on water uptake,ion exchange capacity and proton conductivity of the blend membranes was investigated.This paper presents the results of recent studies applied to develop an optimized in-house membrane electrode assembly(MEA)preparation technique combining catalyst ink spraying and assembly hot pressing.Easy steps were chosen in this preparation technique in order to simplify the method,aiming at cost reduction.The open circuit voltage for the cell with SPSEBS is 0.980 V which is higher compared to that of the cell with Nafion 117(0.790 V).From this study,it is concluded that a polymer electrolyte membrane suitable for proton exchange membrane fuel cell(PEMFC)and direct methanol fuel cell(DMFC)application can be obtained by blending SPSEBS and PVDF in appropriate proportions.The methanol permeability and selectivity showed a strong influence on DMFC performance.  相似文献   

9.
Different proportions of β-cydodextrin and epichlorohydrin were used to prepare a group of β-cyclodextrin polymers. The relationship between the reaction extent and the molar ratios of reactants was discussed according to the results of ~1H-NMR, ~(13) C-NMR spectra and elemental analysis. Especially, high resolution ~1H-NMR spectra were usd for studying the reaction active sites and the extent of reaction. The solubility of oil soluble drugs in water was largely improved in the presence of water-soluble β-cyclodextrin polymer.  相似文献   

10.
颜承农  张华新  梅平  刘义 《中国化学》2005,23(9):1151-1156
The binding of flucytosine to bovine serum albumin (BSA) was studied by means of fluorescence and absorption spectra under the conditions of simulant clay physiology. It showed a powerful ability to quench the fluorescence launching from BSA. After analyzing the fluorescence quenching data by Stem-Volmer equation and Lineweaver-Burk double-reciprocal equation, it was found that they matched the latter better and so they belonged to static quenching. The binding constant was calculated to be 5.710 × 10^3 L·mol^-1 at 297 K. The binding locality was a distance 2.49 nm away from tryptophan residue-212 based on Foster's non-radiation energy transfer mechanism. The binding power is mainly the hydrogen bond and van der Waals force according to the thermodynamic parameters. The information of BSA conformation was acquired by synchronous fluorescence spectrum and three-dimensional fluorescence spectrum.  相似文献   

11.
使用沉降炉开展了水蒸气对高岭土高温吸附铅影响的实验研究,其中铅的形态为PbO和PbCl2两种。首先研究了0-20%水蒸气对高岭土吸附PbO(1100-1300 ℃)和PbCl2(800-1300 ℃)的影响规律,然后基于XRD、SEM和残余羟基率等分析,掌握了水蒸气影响高岭土高温吸附的机理。结果表明,水蒸气可以减少高岭土表面羟基的高温脱落,从而阻碍了PbO吸附、促进了PbCl2吸附。综合高温下惰性莫来石的出现和高岭土孔隙结构的坍塌等因素,PbO和PbCl2的最佳吸附温度分别为1200和1000 ℃。  相似文献   

12.
高岭石/甲酰胺插层的Raman和DRIFT光谱   总被引:9,自引:0,他引:9  
用Raman和漫反射红外光谱研究高岭石/甲酰胺插层反应机理及插层作用对高岭石微结构的影响.  相似文献   

13.
通过尿素对高岭石的插层及随后的超声脱除处理,制备了一种片层剥离的高岭石粉体,并将这种剥离高岭石与聚氧化乙烯/高氯酸锂(PEO/LiClO_4)体系复合,制备出PEO/高岭石复合物.采用X射线衍射仪、红外光谱仪、扫描电子显微镜、透射电子显微镜、扫描量热仪、电化学工作站和万能材料试验机进行结构表征和性能测试.结果表明,尿素在高岭石层间的插层和脱除引起了高岭石片层的剥离,片层厚度小于50 nm.剥离高岭石在PEO/LiClO_4体系中与PEO形成了强烈的氢键作用,促进了PEO结晶度的降低,进而提高复合物的离子电导率.含有20 wt%剥离高岭石填料的PEO/高岭石复合物的离子电导率达到6.0×10~(-5) S/cm,与未复合的PEO/LiClO_4相比,提高了一个数量级.复合物制备过程中的烘干温度对PEO的结晶度会产生一定的影响,95°C下的烘干处理能得到结晶度较低,离子电导率较高的复合物.此外,剥离高岭石的添加显著提高了聚合物的杨氏模量和拉伸强度,与未复合的PEO/LiClO_4相比,杨氏模量和拉伸强度最大提高了256%和121%.  相似文献   

14.
Nonionic polyethylene oxide (PEO) and anionic polyacrylamide (PAM) flocculation of kaolinite dispersions has been investigated at pH 7.5 in the temperature range 20-60 degrees C. The surface chemistry (zeta potential), particle interactions (shear yield stress), and dewatering behavior were also examined. An increase in the magnitude of zeta potential of kaolinite particles, in the absence of flocculant and at a fixed PEO and PAM concentration, with increasing temperature was observed. The zeta potential behavior of the flocculated particles indicated a decrease in the adsorbed polymer layer thickness, while at the same time, however, the adsorbed polymer density showed a significant increase with increasing temperature. These results suggest that polymer adsorption was accompanied by temperature-influenced conformation changes. The hydrodynamic diameter and supernatant solution viscosity of both polymers decreased with increasing temperature, consistent with a change in polymer-solvent interactions and conformation, prior to adsorption. The analysis of the free energy (DeltaG(ads)) of adsorption showed a strong temperature dependence and the adsorption process to be more entropically than enthalpically driven. The polymer conformation change and increased negative charge at the kaolinite particle surface with increasing temperature resulted in decreased polymer bridging and flocculation performance. Consequently, the shear yield stress and the rate and the extent of dewatering (consolidation) of the pulp decreased significantly at higher temperatures (>40 degrees C). The temperature effect was more pronounced in the presence of PEO than PAM, with 40 and 20 degrees C indicated as the optima for enhanced performance of the latter and former flocculants, respectively. The results demonstrate that a temperature-induced conformation change, together with polymer structure type, plays an important role in flocculation and dewatering behavior of kaolinite dispersions.  相似文献   

15.
在水/环己烷微乳体系中制备纳米级氧化锆微粒   总被引:15,自引:0,他引:15  
研究了在水 环己烷 正己醇 Triton X 100的微乳体系中, 几种主要实验参数对由氯氧化锆制备氧化锆纳米粒子的比表面积及其颗粒大小的影响.实验结果表明,微乳体系中水与表面活性剂的摩尔比ro、氯氧化锆的浓度以及微乳沉淀反应的温度都对氧化锆的比表面积有很大影响.在不同温度的微乳体系,氯氧化锆浓度对最终氧化锆粒子的比表面积的影响不同.通过优化制备条件,制得了比表面积为212 m2•g-1(450 ℃焙烧后)的氧化锆纳米粉体.文中还对所制备的氧化锆样品进行了X射线衍射(XRD)、透射电镜(TEM)和氮气吸附的分析.  相似文献   

16.
The degradation of a bio-renewable polymer under UV exposure was studied using various methods. Degradation of the bio-renewable polymer increased with increasing exposure time. Enhanced cross-link density in the early stage of degradation was confirmed by Soxhlet extraction. Tensile testing showed a transition from ductile failure to brittle fracture. Surface cracks and embrittlement were primary reasons for most reductions in mechanical properties, such as tensile strength and breaking strain. The effects of degradation were confined to the surface of thick bio-based polymer specimens, confirmed by both SEM and PAS-FTIR. Depth profile studies of degraded samples showed that the concentration of oxidation products, such as hydroxyl and carbonyl groups, varied with depth depending on the diffusion of oxygen.  相似文献   

17.
Kaolinite hydroxyl surfaces have been modified by the combined application of heat and pressure in the presence of water at 120 degrees C and 2 bars and at 220 degrees C and 20 bars. X-ray diffraction shows that some of the layers are expanded. It is hypothesized that this expansion occurs at the edges of the crystals due to the intercalation of water. The X-ray diffraction data is supported by diffuse reflectance infrared spectroscopy, with additional hydroxyl stretching bands observed around 3550 and 3590 cm-1. These bands are attributed to adsorbed water and to edge-intercalated water. Additional bands are observed in the hydroxyl deformation region around 895 and 877 cm-1. The position of these bands depends on the defect structure of the kaolinite and the conditions under which the kaolinite was thermally treated. Additional water bending vibrations were observed at 1651 and 1623 cm-1 for the thermally treated high-defect kaolinite and at 1682 and 1610 cm-1 for the low-defect kaolinite. The bands at 1651 and 1682 cm-1 are attributed to the bending modes of water coordinated to the kaolinite surface. The role of water in the edge intercalation of water in the high- and low-defect kaolinites is apparently different. Copyright 1999 Academic Press.  相似文献   

18.
于含锂盐的梳状聚醚聚合物电解质添加纳米S iO2制备复合聚合物电解质.并分别使用DSC和XRD研究S iO2对聚合物链段运动能力的影响.电导率测试表明,在相同的锂盐浓度下,加入5%的纳米S iO2后,聚合物电解质具有最高的离子电导率,30℃时为7.8×10-5S/cm,80℃时达到4.5×10-4S/cm.与未添加S iO2的聚合物电解质相比,电导率提高了30%~60%.TGA测定给出该聚合物的热分解温度为300℃左右,显示出良好的安全性能.  相似文献   

19.
采用TG/DTA、FT-IR和in situ DRIFT等技术对甘氨酸在高岭土表面的吸附和热缩合反应进行了表征, 考察了甘氨酸平衡浓度和溶液pH值对吸附行为的影响, 同时探讨了原位条件下甘氨酸的缩合反应历程. 结果表明, 溶液呈弱酸性时, 甘氨酸在高岭土上的吸附量最大, 但吸附等温线不符合Langmuir模型. 在强酸性、弱酸性和碱性溶液中, 吸附态的甘氨酸分别主要以阳离子、两性离子和阴离子形式存在. 弱酸性溶液中, 甘氨酸的—NH3+基团与高岭土表面的≡S—O−(S为Si或Al)基团之间的氢键作用是吸附的主要驱动力, 而强酸性溶液中, ≡S—O−基团的质子化, 以及碱性溶液中—NH3+向—NH2的转化, 是导致吸附量下降的主要原因. In situ DRIFT结果表明, 在110−160 ℃温区, 有明显的线式二肽形成; 随着温度升高至210 ℃时, 二肽进一步脱水, 形成环化缩合产物哌嗪二酮(DKP). 没有检测到硅酯类或铝酯类中间体的特征峰, 反应可能按氢键促进下的自缩合机理进行, 高岭土的存在使缩合反应温度有明显降低.  相似文献   

20.
Effect of water on the formamide-intercalation of kaolinite   总被引:12,自引:0,他引:12  
The molecular structures of low defect kaolinite completely intercalated with formamide and formamide-water mixtures have been determined using a combination of X-ray diffraction, thermoanalytical techniques, DRIFT and Raman spectroscopy. Expansion of the kaolinite to 10.09 A was observed with subtle differences whether the kaolinite was expanded with formamide or formamide-water mixtures. Thermal analysis showed that greater amounts of formamide could be intercalated into the kaolinite in the presence of water. New infrared bands were observed for the formamide intercalated kaolinites at 3648, 3630 and 3606 cm(-1). These bands are attributed to the hydroxyl stretching frequencies of the inner surface hydroxyls hydrogen bonded to formamide with water, formamide and interlamellar water. Bands were observed at similar positions in the Raman spectrum. At liquid nitrogen temperature, the 3630 cm(-1) Raman band separated into two bands at 3633 and 3625 cm(-1). DRIFT spectra showed the hydroxyl deformation mode at 905 cm(-1). Changes in the molecular structure of the formamide are observed through both the NH stretching vibrations and the amide 1 and 2 bands. Upon intercalation of kaolinite with formamide, bands are observed at 3460, 3344, 3248 and 3167 cm(-1) attributed to the NH stretching vibration of the NH involved with hydrogen bonded to the oxygens of the kaolinite siloxane surface. In the DRIFT spectra of the formamide intercalated kaolinites bands are observed at 1700 and 1671 cm(-1) and are attributed to the amide 1 and amide 2 vibrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号