首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 861 毫秒
1.
In this study, we used the Span 80 to enhance solvent extraction process, and we explored the mechanism. The results indicated different solvents would obtain different oil recovery, and toluene showed the optimal oil recovery, and the n-heptane showed the lowest oil recovery. The complex solvents could improve oil recovery. Toluene could make the heavy oil show the lowest viscosity (89.6 Pa.S), and n-heptane make the heavy oil show the highest viscosity (176.3 Pa.S). Complex solvents could decrease the heavy oil viscosities. The higher C/H was, the higher heavy oil recovery was, and when the asphaltene and resins content increase, the C/H would increase. The C/H showed the highest value (9.09, by toluene) and the lowest value (8.15). In this study, Span 80 could increase heavy oil C/H ratio, decrease heavy oil viscosity. Span 80 could make the sands surface more hydrophilic, and then the solvent loss would decrease. The oil recovery was high after 10 times recycle use.  相似文献   

2.
In this work, we presented plasma modification of low-density polyethylene (PE) powder using unconventional chemicals. This work focused on the thermal behavior of modified PE. Plasma modification of PE was carried out using unconventional chemical vapor i.e., acetone, toluene, ethanol, methanol, isopropanol, and chloroform, respectively. For all the process, the modification time was kept constant for 2 min. Chamber pressure of 100 Pa was used for the study. The thermal behavior of the plasma-modified and unmodified PE was carried out by differential scanning calorimetry and thermogravimetric analysis. We have found that there is a maximum improvement of crystallinity and thermal stability of PE when ethanol is used for plasma modification. Results obtained from DSC showed that plasma modification of PE in ethanol vapors increases the crystallinity of the PE without damaging the surface properties. Thermal stability of PE plasma modified in ethanol gives maximum thermal improvement to almost 25 °C at 5 mass% mass loss compared to unmodified PE.  相似文献   

3.
Song G  Lu C  Lin JM 《Analytica chimica acta》2007,596(2):312-318
In the present work, the use of surfactants and oil-in-water (O/W) microemulsions as alternative extractants in accelerated solvent extraction (ASE) for the extraction of polycyclic aromatic hydrocarbons (pyrene and phenanthrene) from soils was investigated. In particular, the effect of each individual component within the microemulsions, i.e., oil phase, surfactant and co-surfactatnt, and extraction conditions on the percentage recovery was systematically studied. When compared to the water and organic solvent, the important findings were that the common surfactant solutions at the concentrations above their critical micelle concentrations (CMC) were shown to enhance the percentage recovery at the lower extraction temperature. Moreover, the highest percentage recovery can be obtained using microemulsion as the extractant. The chemical component within the microemulsions and relative amounts of the oil phase appeared to play a much more significant role in ensuring high percentage recovery. Finally, an overall comparison between the percentage recoveries obtained with ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE) and ASE using organic solvents, surfactants and microemulsions as extractants was exhibited.  相似文献   

4.
This article describes the preconcentration of methyl methacrylate in produced water by the dispersive liquid–liquid microextraction using extraction solvents lighter than water followed by gas chromatography. In the present experiments, 0.4 mL dispersive solvent (ethanol) containing 15.0 μL extraction solvent (toluene) was rapidly injected into the samples and followed by centrifuging and direct injection into the gas chromatograph equipped with flame ionization detector. The parameters affecting the extraction efficiency were evaluated and optimized including toluene (as extraction solvent), ethanol (as dispersive solvent), 15 μL and 0.4 mL (as the volume of extraction and dispersive solvents, respectively), pH 7, 20% ionic strength, and extraction's temperature and time of 20°C and 10 min, respectively. Under the optimum conditions, the figures of merits were determined to be LOD = 10 μg/L, dynamic range = 20–180 μg/L, RSD = 11% (n = 6). The maximum recovery under the optimized condition was determined to be 79.4%.  相似文献   

5.
A rapid and reproducible method is described that employs solid-phase extraction (SPE) using dichloromethane, followed by gas chromatography (GC) with flame ionization detection for the determination of benzene, toluene, ethylbenzene, xylene and cumene (BTEXC) from Buriganga River water of Bangladesh. The method was applied to detect BTEXC in a sample collected from the surface, or 5 cm depth of water. Two-hundred milliliters of n-hexane-pretreated and filtered water samples were applied directly to a C18 SPE column. BTEXC were extracted with dichloromethane and the BTEX concentrations were obtained to be 0.1 to 0.37 microg ml(-1). The highest concentration of benzene was found as 0.37 microg ml(-1) with a relative standard deviation (RSD) of 6.2%; cumene was not detected. The factors influencing SPE e.g., adsorbent types, sample load volume, eluting solvent, headspace and temperatures, were investigated. A cartridge containing a C18 adsorbent and using dichloromethane gave a better performance for the extraction of BTEXC from water. Average recoveries exceeding 90% could be achieved for cumene at 4 degrees C with a 2.7% RSD.  相似文献   

6.
超临界苯类溶剂对聚苯乙烯降解的影响   总被引:2,自引:0,他引:2  
在高压间歇反应器中,温度340~370℃,以苯、甲苯、乙苯和对二甲苯为超临界溶剂研究了聚苯乙烯(PS)的降解特性.苯类物质是聚苯乙烯的优良溶剂,在超临界条件下其优异的传质、传热性能使聚苯乙烯快速降解.聚苯乙烯在不同超临界溶剂中降解转化率相近,而降解产物组成差别很大,分析了不同超临界溶剂对聚苯乙烯降解过程的影响.结果表明超临界甲苯对降解过程影响最小,苯乙烯收率最高.聚苯乙烯降解过程中,高分子链断裂和解聚同时进行,结合连续分布理论建立了聚苯乙烯降解的动力学模型,得到在超临界甲苯中聚苯乙烯链端解聚活化能为138.4 kJ.mol-1.  相似文献   

7.
Abstract

Toluene, used as a carrier solvent in GPC analyses provides different elution profiles for asphalt materials than does THF. With proper precautions and technique, chromatogram reproducibility is excellent. GPC analyses of Corbett fractions in both THF and toluene provide insight into the refractive index, solvent power, and column interaction effects which give rise to the different elution profiles in toluene. The differences provide additional information on asphalt composition which may be of use in predicting asphalt performance.  相似文献   

8.
The dispersion of pristine and nitric acid-treated single-wall carbon nanotubes (SWNTs) has been studied in organic solvents and solvent mixtures using optical absorption, as a function of settling time. The extinction coefficients of both the pristine and acid-treated tubes at 500-nm wavelength was measured to be 25.5 (mg/L)(-1) cm(-1) in various solvents. The dispersibility of nitric acid-treated tubes increased with the solvent's hydrogen-bonding ability and reached 27 mg/L in ethanol and 35 mg/L in water. Nitric acid-treated tubes could also be dispersed in butanol/toluene and xylene/ethanol mixtures, which are known to be poor solvents for the pristine SWNTs.  相似文献   

9.
Combinations of different aromatic polymers and organic solvents have been studied as dispersing agents for preparing single-walled carbon nanotubes solutions, using optical absorbance, photoluminescence-excitation mapping, computer modeling, and electron microscopic imaging to characterize the solutions. Both the polymer structure and solvent used strongly influence the dispersion of the nanotubes, leading in some cases to very high selectivity in terms of diameter and chiral angle. The highest selectivities are observed using toluene with the rigid polymers PFO-BT and PFO to suspend isolated nanotubes. The specific nanotube species selected are also dependent on the solvent used and can be adjusted by the use of THF or xylene. Where the structure has more flexible conformations, the polymers are shown to be less selective but show an enhanced overall solubilization of nanotube material. When chloroform is used as the solvent, there is a large increase in the overall solubilization, but the nanotubes are suspended as bundles rather than as isolated tubes which leads to a quenching of their photoluminescence.  相似文献   

10.
To develop an efficient green extraction approach for recovery of bioactive compounds from natural plants, we examined the potential of pressurized liquid extraction (PLE) of ginger (Zingiber officinale Roscoe) with bioethanol/water as solvents. The advantages of PLE over other extraction approaches, in addition to reduced time/solvent cost, the extract of PLE showed a distinct constituent profile from that of Soxhlet extraction, with significantly improved recovery of diarylheptanoids, etc. Among the pure solvents tested for PLE, bioethanol yield the highest efficiency for recovering most constituents of gingerol-related compounds; while for a broad concentration spectrum of ethanol aqueous solutions, 70% ethanol gave the best performance in terms of yield of total extract, complete constituent profile and recovery of most gingerol-related components. PLE with 70% bioethanol operated at 1500 psi and 100 °C for 20 min (static extraction time: 5 min) is recommended as optimized extraction conditions, achieving 106.8%, 109.3% and 108.0% yield of [6]-, [8]- and [10]-gingerol relative to the yield of corresponding constituent obtained by 8h Soxhlet extraction (absolute ethanol as extraction solvent).  相似文献   

11.
In order to evaluate the extent of silicone oil contamination in a drug substance derived from processing equipment, a novel extraction method was developed which uses a mixture of polar and non-polar solvents (toluene/acetonitrile). Unlike the majority of silicone oil extraction methods in the literature that yield very low recoveries, this procedure proved able to completely recover the silicone oil from this compound. The recovered silicone oil was rediluted in isopropanol alcohol (IPA)/toluene mixture and subsequently analyzed by an inductively coupled plasma atomic emission spectrometer (ICP-AES) coupled to an ultrasonic nebulizer (USN).  相似文献   

12.
神华煤直接液化残渣超临界溶剂萃取研究   总被引:2,自引:0,他引:2  
利用甲苯、苯和乙醇三种溶剂在反应釜中对神华煤直接液化残渣进行了超临界溶剂萃取,考察了压力、温度、萃取时间、溶剂/残渣比等对萃取产物收率和重质液体萃取组成的影响。结果表明,以甲苯为溶剂进行萃取时,萃取时间对重质液体产率及HS和A收率的影响不大,而温度、压力以及溶剂/残渣质量比都会影响萃取产物的产率及组成。溶剂超临界萃取过程中,有其他组分向HS组分转化,提高了HS的收率。三种溶剂中,苯显示了和甲苯相似的萃取性能,而乙醇的萃取性能相比苯和甲苯则较差,但乙醇萃取得到的重质液体中轻质组分含量高于苯和甲苯。萃取过程中,残渣中的灰分和硫分主要富集至萃取残渣中。  相似文献   

13.
We report the co‐assembly of aromatic donor (D) and acceptor (A) molecules into purple sponge‐like supramolecular gels through susceptible charge transfer interactions with the aid of solvophobic interactions. The gel remained intact with the addition of up to 23 % (v/v) of nonpolar good solvents, such as toluene and xylene, but dissociated in the presence of <2 % (v/v) of polar solvents, such as tetrahydrofuran, ethyl acetate, and alcohols, with highly distinguishable changes of color. Notably, the gel dissolved within 1 min and the solution turned blue when 0.1 % (v/v) of methanol was added. The response to trifluoroacetic acid was extremely sensitive (i.e., the gel vanished immediately in the presence of 2 equivalents of trifluoroacetic acid), and the subsequent addition of trimethylamine could recover the purple gel. The multiple and visible response thus render the D–A gels as a potential detector for sensing complex chemical environments.  相似文献   

14.
Vo E  Berardinelli SP  Hall RC 《The Analyst》1999,124(6):941-944
The efficiency of solvent adsorption using Permea-Tec general solvent pads, used for the detection of chemical breakthrough of protective clothing, was determined for methanol, acetone, ethyl methyl ketone, trichloroethylene (TriCE), tetrachloroethylene (TetCE), toluene, m-xylene, and D-limonene. Known volumes of single or mixed solvents were added to pads in the range 0.2-5.0 microliters (0.16-8.13 micrograms). After microwave-solvent extraction (ME) into hexan-1-ol, the samples (0.5-3.0 microliters) of the filtered and extracted solutions were analyzed by gas chromatography. All solvents exhibited > 97% adsorption on the pads at spiking levels of 0.48-0.98 microgram for each solvent. The solvent recovery for the system was calculated for each solvent, with solvents with boiling points below 110 degrees C showing recoveries of > 90%, and with solvents with boiling points above 110 degrees C showing recoveries from 80 to 90%. The recovery precision was good (RSD < or = 4%) for all solvents over the range 1.0-2.5 microliters of applied solvents to pads for ME and 1.0 microliter of extracted solutions for GC analysis.  相似文献   

15.
16.
A new route for the regioselective synthesis of 2,3,4,5‐tetrahydro‐1H‐pyrido[4,3‐b]indole derivatives was developed based on cyclization of 3‐chlorophenylimine‐N‐alkyl‐4‐piperidones by “the complex bases” of NaNH2 or KNH2. The procedure was performed under variable reaction conditions in inert proton‐free solvents, such as THF, dioxane, 1,2‐dimethoxyethane, toluene, and xylene, at temperatures varying from 20°C to boiling point of the solvent used. Toxic arylhydrazine intermediates occurring in the classical Fischer indole synthesis are avoided.  相似文献   

17.
The oily sludge would cause environment pollution, and would cause the heavy oil waste. Therefore, it was vital for us to find novel methods to obtain heavy oil from the oily sludges. In this study, the [C12mim][PF6] and [C12mim][Br] ionic liquids(ILs) were used to enhance the oil recovery. The toluene could obtain the highest oil recovery, and both the two ILs could increase the oil recovery. Toluene could obtain the highest oil recovery (89.4 wt%), and n-octane could obtain the lowest oil recovery (76.8 wt%). [C12mim] [PF6] could efficiently increase the heavy oil recovery to 91.2 wt%(by toluene). The [C12mim][Br] could increase the heavy oil recovery further. Both the [C12mim] [PF6] and the [C12mim][Br] ionic liquids could increase the heavy ois C/H ratio, decrease heavy oil viscosity and increase the sands hydrophilicity. The [C12mim][Br] ionic liquids showed better effect. In addition, the ionic liquids could increase the solvents recovery, and the ionic liquids recovery were high. Therefore, the ionic liquids enhanced oil recovery could be recycled to ten times. The two ionic liquids could effectively decrease the heavy oil interaction force, and when the ionic liquids increased to 200 ppm, the force remained stable. In the end, the ionic liquids enhancing solvent extraction mechanism was put forward.  相似文献   

18.
In this study, we evaluated the suitability of six common organic solvents for gas chromatographic (GC) analysis of pesticides. Three of these, acetone, acetonitrile (MeCN) and ethyl acetate (EtAc), represent extraction solvents commonly used in multiresidue methods for determination of pesticides in produce. The other three, isooctane, hexane and toluene, often serve as exchange solvents before a GC analysis. An ideal solvent for GC analysis of multiclass pesticide residues should be compatible with: the analytes, sample preparation, and GC analysis. This study addresses each aspect with emphasis placed on stability of selected pesticides in the given solvents. In this respect, the exchange solvents proved to be superior to the more polar extraction solvents. Degradation of N-trihalomethylthio fungicides (e.g., captan, folpet, dichlofluanid) in MeCN was observed only in certain lots of the tested MeCN, but even if it occurred, the stability of these analytes as well as that of dicofol and chlorothalonil was dramatically improved by the addition of 0.1% (v/v) acetic acid. Dicofol and chlorothalonil were also unstable in acetone, and pesticides with a thioether group (e.g., fenthion, disulfoton) degraded in the tested EtAc. Formation of isomers of certain pyrethroids (deltamethrin, lambda-cyhalothrin) was recorded in the chromatograms from MeCN and acetone solutions, but this effect more likely occurred during the GC injection than in solution. For several reasons, MeCN was found to be the most suitable solvent for extraction of a wide polarity range of pesticide residues from produce. After acidification, the stability of problematic pesticides in MeCN is acceptable, and MeCN can also serve as a medium for GC injection; therefore solvent exchange is generally not required before GC analysis. If sensitivity is an issue in splitless injection, then toluene was demonstrated to be the best exchange solvent due to its miscibility with MeCN and stronger responses of relatively more polar pesticides (e.g., acephate, methamidophos) as compared to hexane and isooctane.  相似文献   

19.
采用大分子单体法合成了一系列聚苯乙烯接枝壬基酚聚氧乙烯 (PS g NPEO)两亲共聚物 ,采用溶液铸膜法将其在PET表面制膜 ,并利用扫描电子显微镜 (SEM) ,X射线光电子能谱 (XPS) ,衰减全反射红外光谱(ATR)和水接触角 (CA)等手段研究了共聚物组成、铸膜溶剂及浓度对共聚物膜表面形貌、组成及水浸润性能的影响 .结果表明 ,两亲接枝共聚物在不同条件下可形成规则的表面微孔 ,共聚物中NPEO含量越高 ,共聚物膜表面微孔孔径越大 ,对应的水接触角越小 .以THF为铸膜溶剂时 ,制膜浓度越大 ,共聚物膜表面微孔孔径越大 ,对应的水接触角越小 ;而以甲苯为溶剂时 ,制膜浓度对共聚物膜表面形貌影响不大 ,但水接触角要较THF体系显著降低 ,水接触角与浓度关系与THF体系相反 ,制膜浓度越大 ,对应的水接触角越大 .制膜浓度相同时 ,THF作溶剂 ,共聚物膜微孔较大 ,表面亲水组分含量较低 ;以甲苯为溶剂 ,微孔较密 ,表面亲水组分较高 .  相似文献   

20.
Accelerated solvent extraction was studied as a method for the extraction of hydrocarbon contamination from wet and dry soils. Temperatures from 125 to 200 degrees C and six different solvents were investigated. Nonpolar solvents could not achieve complete recovery from wet soils at the temperatures studied. Optimum conditions were found to be 175 degrees C with dichloromethane-acetone (1:1, v/v) with 8 min heat-up time and 5 min static time. Quantitative recoveries for diesel range organics (DROs) and waste oil organics (WOOs) were obtained using the optimized conditions. The recovery of DROs and WOOs from three matrices at two concentrations (5 and 2000 mg/kg) averaged 115%. These results show that accelerated solvent extraction can generate results comparable to those obtained using Soxhlet or sonication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号