首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
锂金属因其具有超高比容量(3860 mAh·g-1)以及较低的氧化还原电势(-3.04 V vs 标准氢电极),被认为是下一代高能量密度二次电池的理想负极材料。然而“无宿主”的金属锂在金属/电解液界面层进行沉积/剥离,不可避免地会生长枝晶,不仅使电极表面电流分布不均,同时可能会刺穿电池隔膜而导致电池短路。通过构造三维集流体/锂金属复合负极可以有效调控锂沉积行为并抑制枝晶生长,从而提升电池的库仑效率、循环寿命以及倍率性能,该领域近年来一直都是研究的热点。本文首先总结了基于三维集流体抑制锂枝晶的相关原理和模型;其次针对用于负极的铜基集流体,根据构成三维结构基底单元的维度,总结了三维铜基集流体的制备方法及其在锂金属负极保护方面的应用;最后,对三维集流体构造复合锂负极进行了总结和展望。  相似文献   

2.
具有高比容量和低成本的锂硫电池被认为是下一代电池的重要候选者.然而,低的硫利用率、严重的穿梭效应以及金属锂负极枝晶的生长制约其实际应用.在电解液中引入添加剂被证实是一种简单有效的性能改善策略.为此,本文将高浓度的LiI引入到Li-S电池的常规电解液中,研究高浓度的LiI电解液对硫正极的利用、金属锂负极的保护以及对应电池电化学性能的影响.结果表明,高浓度的碘化锂电解液能够在金属锂负极表层形成稳定的保护层,抑制了锂枝晶的产生.与此同时,碘化锂的引入大幅度提高电池的比容量、有效改善电池的倍率性能和循环稳定性.通过优化发现,浓度为0.5 mol·L-1的LiI具有最佳的电化学性能.采用此电解液的锂硫电池,在1 C倍率下,放电容量高达1 200 mAh·g-1. 200次循环之后,容量仍能保持在880 mAh·g-1,容量保持率接近75%.此外,电池展示了良好的倍率性能,在5 C倍率下,放电容量依然高达700 mAh·g-1.  相似文献   

3.
水热法是广泛应用于锂离子电池Si@C电极材料的一种制备方法,其反应条件是影响产物最终形貌和性能的重要因素, 采取最佳的反应工艺可以大大提升材料的电化学性能。本研究中, 使用葡萄糖作为碳源, 光伏切割废料硅为硅源, 探究了水热法制备核壳结构Si@C电极材料的最优工艺, 分别研究了温度、 原料浓度、 反应时间和原料比例对产物的形貌、 性能的影响以及相互之间的关系, 并得到最佳反应条件。在该条件下(葡萄糖浓度为0.5 mol·L-1, 硅与葡萄糖重量比为0.3:1, 反应温度190 oC, 反应时间9 h), 得到了包覆完整、 粒径适中的Si@C电极材料(CS190-3), 对以该样品为负极的扣式半电池进行电化学测试, 在655 mA·g-1的电流密度下, 其首圈放电比容量为3369.5 mAh·g-1, 经过500次循环剩余容量为1405.0 mAh·g-1。倍率测试中, 在6550 mA·g-1的电流密度下,其剩余容量为937.1 mAh·g-1,当电流密度恢复至655 mA·g-1时,电池放电比容量仍可恢复至1683.0 mAh·g-1。  相似文献   

4.
胡健  蒙延双  胡倩茹 《电化学》2021,27(5):540-548
以离子液体为碳源和氮源、次亚磷酸钠为磷源、乙酸镍为镍源,一步法制备了磷化镍/氮磷共掺杂碳(Ni2P/NPC)复合材料。SEM、TEM等检测结果表明Ni2P纳米颗粒在N、P共掺杂碳骨架上均匀分布。将所制备Ni2P/NPC作为锂离子电池负极材料时,Ni2P/NPC电极在0.1、0.5、1、3和5 A·g-1电流密度下的放电比容量分别为377.7、 294.1、 265.4、211.7和187.5 mAh·g-1。当电流密度重新回到0.1 A·g-1,放电比容量为368.1 mAh·g-1。电极结构在大倍率下可以保持稳定,表现出优异的倍率性能。在0.5 A·g-1的电流密度下经200次循环后放电比容量维持在301.8 mAh·g-1,容量保持率为80.7%,CV曲线证实Ni2P/NPC在储锂过程中是由扩散过程和电容行为共同控制。  相似文献   

5.
锂硫电池因其较高的理论容量和对环境友好等优势被视为极具发展潜力的储能装置,但是多硫化物的穿梭效应极大地限制了锂硫电池的实际应用。本文以葡萄糖为碳源,离子液体为氮源和硫源,KCl和ZnCl2为模板剂,KOH为活化剂,通过热解工艺合成了氮硫共掺杂多孔碳(NSPC)。XPS和极性吸附实验表明N、S杂原子成功引入并且提高了碳材料对多硫化物的吸附能力,有效缓解多硫化物的穿梭效应,而较高的比表面积(1290.67 m2·g-1)有助于提高硫负载量。负载70.1wt.%的硫后(S@NSPC)作为锂硫电池的正极材料表现出了良好的电化学性能。在167.5 mA·g-1的电流密度下S@NSPC的首次放电容量为1229.2 mAh·g-1,远高于S@PC的861.6 mAh·g-1,且S@NSPC循环500圈后容量为328.1 mAh·g-1。当电流密度从3350 mA·g-1恢复至167.5 mA·g-1时,可逆容量达到首圈放电比容量的80%,几乎恢复至其初始值。  相似文献   

6.
金属锂具有高理论比容量和低氧化还原电位, 被认为是高能量密度二次电池最理想的负极材料之一, 但其在循环过程中的枝晶生长和体积变化易造成电池失效和安全隐患. 以孔径为5 μm左右的自制三维多孔铜为基底, 在其表面电沉积锌层(3D Cu@Zn), 作为金属锂沉积的集流体, 构筑无枝晶锂金属电极. 三维多孔铜的孔结构稳定, 孔径大小适宜, 可有效降低局部电流密度和缓解体积变化. 锌镀层可降低锂金属的形核过电位, 诱导锂的均匀沉积, 有效抑制锂枝晶生长. 以3D Cu@Zn为集流体, 锂沉积面积容量为4 mAh•cm–2, 电极表面仍无枝晶出现, 经过锂剥离后表面仍然光滑; 而铜箔上沉积的锂显示明显的枝晶和不均匀性, 3D Cu上沉积的锂显示局部不均匀性和一定量枝晶. 在电流密度为0.5和 1 mA•cm–2, 面积容量为1 mAh•cm–2条件下, Li||3D Cu@Zn半电池获得了稳定的库伦效率; 在2 mA•cm–2的高电流密度和1 mAh•cm–2的面积容量条件下, Li||3D Cu@Zn@Li对称电池可稳定循环700 h以上; 以3D Cu@Zn@Li为负极, LiFePO4为正极的全电池, 在1 C倍率下, 经过150次循环后仍保持88 mAh•g–1的容量, 均明显优于Cu片和3D Cu作为集流体的锂金属电极.  相似文献   

7.
金属锂具有超高理论比容量密度(3680 mA·h·g?1)和低还原电位(?3.04 V vs.SHE),被认为是高能量密度电池负极材料的“圣杯”.然而,由于锂枝晶不可控生长和对电解质高反应性导致的库仑效率低、循环寿命短及内短路等问题严重制约着金属锂负极的实用化进展.在实际的电化学体系中,集流体作为金属锂沉积/脱出的基底,其表面性质对锂负极的循环稳定性起着至关重要的作用.本文从负极、集流体表面成分以及微结构设计两方面系统总结了构建三维亲锂骨架材料的改性策略.利用金属、金属氧化物、杂原子掺杂、聚合物材料及有机框架材料等高亲锂材料对集流体和负极的界面及结构进行针对性调控修饰,可以有效调控金属锂的电沉积,推进金属锂负极在高能量密度电池体系中的实用化进程.  相似文献   

8.
金属锂具有最高的理论比容量(3860 mAh·g?1)和最低的还原电势(?3.04 V),是新型高能量密度电池负极材料的最佳选择之一。然而由于金属锂负极表面自发生成的固态电解质界面(SEI)十分不稳定,导致锂枝晶的产生和电池容量快速衰减,严重限制了锂金属电池的商业化应用。因此,本工作利用碳酸双(2,2,2-三氟乙基)酯(DTFEC)添加剂在三维锡锂合金/碳纸负极(SnLi/Cp)表面原位构筑了高机械强度和离子穿透性的含氟化物(LiF和SnF2)保护层,有效地改善了锂负极的倍率性能和循环稳定性。结果显示,SnLi/Cp对称电池在8 mA·cm?2的电流密度下经过100次循环后过电位仅为90 mV。当将电解液降低到12μL(1.5μL·(mAh)?1)时,在5 mA·cm?2的电流密度下对称电池仍具有优异的稳定性;SnLi/Cp||NMC811电池在1C(1.5 mA·cm?2)条件下能稳定循环300圈以上,库伦效率高达98.1%。这种方法能够显著改善锂金属负极的循环稳定性,有助于实现高能量密度锂金属电池的实际应用。  相似文献   

9.
尽管传统的石墨负极在商业化锂离子电池中取得了成功,但其理论容量低(372 mAh·g?1)、本身不含锂的先天缺陷限制了其在下一代高比能量锂电池体系中的应用,特别是在需要锂源的锂-硫和锂-空气电池体系中。金属锂因其极高的理论比容量(3860 mAh·g?1)和低氧化还原电势(相对于标准氢电极为?3.040 V),被认为是下一代锂电池负极材料的最佳选择之一。但是,金属锂负极存在库伦效率低、循环性能差、安全性差等一系列瓶颈问题亟待解决,而循环过程中锂枝晶的生长、巨大的体积变化、以及电极界面不稳定等是导致这些问题的关键因素。本文综述了近年来关于金属锂负极瓶颈问题及其机理,包括金属锂电极表面固态电解质界面膜的形成,锂枝晶的生长行为,以及惰性死锂的形成。同时,本文还介绍了目前用于研究金属锂负极的先进表征技术,这些技术为研究人员深入认识金属锂负极的失效机制提供了重要信息。  相似文献   

10.
金属锂负极由于比容量高(3860 mAh·g-1)及氧化还原电位极低(-3.04 V vs.标准氢气电极(SHE)),被认为是实现高能量密度锂电池的理想负极。然而,金属锂电极与电解液反应剧烈,且锂离子在电极表面沉积不均匀容易产生枝晶,导致其循环稳定性和安全性都较差,限制了其应用推广。我们前期通过构建金属锂-碳纳米管(Li-CNT)复合结构,极大的提高了金属锂的比表面积,降低了电极电流密度,从而有效地抑制了锂枝晶的生长,提高了金属锂电极的循环稳定性和安全性能。本工作在前期工作基础上,采用简单的液相反应,利用4-氟苯乙烯(FPS)对Li-CNT进行表面修饰并进行原位聚合,得到了表面富含氟化锂(Li F)保护层的Li-CNT(FPS-Li-CNT)。该表面修饰层能够有效抑制电解液和空气对Li-CNT的侵蚀,显著的提高了LiCNT电极的界面稳定性。FPS-Li-CNT与磷酸铁锂正极(LFP)组成的LFP||FPS-Li-CNT全电池,在正负极容量配比为1:6条件下,能够稳定循环280圈,库伦效率达到97.7%。  相似文献   

11.
王东浩  晏鹤凤  龚正良 《电化学》2021,27(4):388-395
使用硫化物固体电解质的全固态锂硫电池由于多硫化物不溶于硫化物固体电解质及硫化物电解质不可燃的特性,得以完全避免穿梭效应并显著提高了电池的安全性能而被认为是极具潜力的下一代储能电池。如何建立并平衡复合正极中离子/电子导电网络且维持复合正极中较高活性物质含量对于全固态锂硫电池至关重要。本文以单质硫为活性物质研究了复合导电添加剂对全固态锂硫电池性能的影响,发现以乙炔黑(AB)为导电碳材料明显优于Super P和Ketjen Black;优化复合正极的组成,发现硫:乙炔黑:固体电解质的质量比为40:20:40时,全固态锂硫电池在室温和60℃下均具有良好的电化学性能。  相似文献   

12.
彭依  张伟  左防震  吕浩莹  洪凯骏 《电化学》2021,27(4):456-464
二硒化钼是一种二维过渡金属硫族化合物材料,凭借其具有较快的离子迁移率、较弱的范德华力的层状结构,在锂离子电池的应用研究中吸引了广泛的关注。同时在镁离子电池应用中表现出潜在的研究前景。然而,有关二硒化钼在锂离子电池中的报道多集中在如何提高储锂性能上,对其离子存储机理缺乏深入研究。此外,在储镁性能和机理上均没有报道。本项工作通过湿化学和高温煅烧两步法合成了二硒化钼纳米球,当二硒化钼纳米球用作锂离子电池负极材料时,在5 A·g-1的电流密度下展示了高于100 mAh·g-1的优异高倍率容量;同时,作为镁离子电池正极材料时,在20 mA·g-1的电流密度下表现出了120 mAh·g-1的高储镁可逆容量。另外,通过电化学、原位和非原位X射线衍射表征技术,分别揭示了二硒化钼纳米球低平台发生的转化式和高平台发生的类锂硒电池反应并存的储锂机理,以及赝电容式为主,嵌入式为辅的储镁机理。本项工作不仅为二维过渡金属硫族化合物材料的储锂机理提供了深刻的理解,同时也为新型层状储能材料的设计开发提供了方向。  相似文献   

13.
锂金属电池作为下一代高比能量电池技术受到人们越来越广泛的关注。然而由锂枝晶生长引发的安全问题是锂金属电池商业化面临的最大挑战之一。具有高锂离子迁移数和离子电导率的聚合物电解质是抑制锂枝晶生长的重要策略之一。本文将季戊四醇四丙烯酸酯和自由基引发剂AIBN添加至商业化电解液中,采用具有单离子传导功能的多孔聚合物电解质为锂金属电池的电解质隔膜,通过在电池内部发生热诱导原位聚合制备三维半互穿网络单离子传导聚合物电解质,达到提高电解质隔膜离子电导率和机械拉伸性能,以及有效抑制锂枝晶生长的目的。通过该策略的实施,成功获得了室温离子电导率0.53 mS·cm-1和锂离子迁移数0.65的良好结果。应用于锂金属电池,证明该电解质能够有效抑制锂枝晶的生长和倍率性能的提高,为锂金属电池的开发提供了良好的解决路径。  相似文献   

14.
金属锂具有超高的理论容量(3860 mAh·g-1)和低氧化还原电位(-3.04 V vs.标准氢电极),是极具吸引力的下一代高能量密度电池的负极材料。然而,循环过程中的体积膨胀、锂枝晶生长和“死锂”等问题严重的限制了其实际应用。合理设计三维骨架调控金属锂的成核行为是抑制锂枝晶生长的有效策略。本文中,我们发展了一种“软硬双模板”的方法合成了兼具大孔和介孔的三维碳-碳化钛(Three-dimensional macro-/mesoporous C-TiC,表示为3DMM-C-TiC)复合材料。多级孔道为金属锂的沉积提供了足够的空间,缓冲充放电中巨大的体积变化。此外,TiC的引入显著增强多孔骨架的导电性,改善锂金属的成核行为,促进金属锂的均匀成核和沉积,抑制锂枝晶生长。3DMM-C-TiC||Li电池测试表明,在循环300圈以后,库伦效率仍保持在98%以上。此外,所得材料与LiFePO4 (LFP)组成的全电池也表现出优异的倍率和循环性能。本工作为无枝晶锂金属负极的设计提供了新的思路。  相似文献   

15.
本文以CrO3为原料,采用高温固相法制备锂电池用正极材料Cr8O21,系统研究了热处理时间对Cr8O21结构、电化学性能的影响。采用TGA、XRD、SEM、EDS、ICP、EIS和恒流放电技术对制备的铬氧化物的物相及电化学性能进行研究。结果表明,延长热处理时间有利于提升材料的电化学性能。且不同的热处理时间对材料的电化学性能有重要影响。热处理时间为48 h得到的材料性能优异,在恒放电电流0.05 mA下,材料克比容量达到383.26 mAh·g-1,克比能量达到1153.83 mWh·g-1,平均放电电压3.01 V。  相似文献   

16.
锂金属是下一代高能量密度电池的关键负极,然而其实用化面临着一系列问题,主要包括循环过程中体积变化大、枝晶生长等。使用三维集流体是解决这些问题的有效方法,然而现有大多数三维集流体存在重量大、体积大、表面亲锂性差、成本高等问题。针对上述问题,本文以低成本的细菌纤维素为前驱体,通过直接碳化制备出具有连通网络的轻质三维碳集流体,其表面均匀分布的含氧官能团可以促进锂离子的均匀成核和沉积,有效抑制了枝晶生长。值得注意的是,该集流体的面密度仅为0.32 mg·cm?2,在3 mAh·cm?2比容量的锂金属负极中质量占比仅为28.8%。电化学测试结果表明,该集流体在3 mA·cm?2的高电流密度或4 mAh·cm?2的高循环容量的工作条件下,稳定循环超过150次,并且在对称电池或与LiNi0.8Co0.15Al0.05匹配的全电池中也表现出良好的电化学性能。  相似文献   

17.
金属锂由于其极高的理论比容量(3860mAh·g~(-1),2061mAh·cm~(-3))和低的还原电势(相对于标准氢电极(SHE)为-3.04 V)等特点,成为了高能量密度锂电池负极材料的极佳选择之一。从上个世纪七十年代开始,科研工作者便开始了金属锂负极的研究,然而,由于金属锂与电解液反应严重,镀锂过程体积膨胀大,且在循环中易生成枝晶,以金属锂为负极的电池循环稳定性差,而且容易短路从而带来安全隐患。因此金属锂做为锂电池负极的商业化推广最终没有成功。在本工作中,我们在前期设计的锂-碳纳米管复合微球(Li-CNT)中引入了纳米硅颗粒制备了硅颗粒担载的锂-碳复合球(LiCNT-Si)。实验发现,纳米硅颗粒的加入不仅提高了锂-碳复合微球的载锂量(10%(质量百分含量)的硅添加量使得比容量从2000 mAh·g~(-1)提高到2600 mAh·g~(-1)),降低了锂的沉积/溶解过电势,有利于引导锂离子回到复合微球内部沉积,大大提高了材料的循环稳定性。同时,担载了纳米硅颗粒的锂-碳复合球也继承了锂-碳复合微球循环过程中体积膨胀小,不长枝晶的优点。而且添加的纳米硅颗粒还填充了Li-CNT微球中的孔隙,减少了电解液渗入复合微球内部腐蚀里面的金属锂,进一步提高了材料的库仑效率。以添加10%硅的锂碳复合材料作为负极,与商用磷酸铁锂正极组成全电池,在常规酯类电解液中1C (0.7 mA·cm~(-2))条件下能稳定循环900圈以上,库仑效率为96.7%,大大高于同样条件下测得的Li-CNT复合材料(90.1%)和金属锂片(79.3%)的库仑效率。因此,这种通过简单的熔融浸渍法即可制备的,具有高的比容量和长的循环稳定性的锂硅-碳复合材料具有较大的潜能成为高能量密度电池的负极材料,尤其适用于锂硫、锂氧这种正极不含锂源的电池体系。  相似文献   

18.
水系钠离子电池具有钠资源丰富、成本低廉、安全可靠、维护简单等特点,在可再生能源规模储存领域具有重要应用前景。NASICON型NaTi2(PO4)3具有可逆容量高、工作电位低、离子传输快等优点,是目前最受关注的水系钠离子电池负极材料。但是,该材料在传统的水系电解液中结构不稳定,循环性能不足。本论文通过调控Na2SO4浓度和引入MgSO4添加剂,构建了一种新型硫酸盐功能电解液(2 mol·L-1 Na2SO4 + 0.3 mol·L-1 MgSO4)。该电解液能够显著增强NaTi2(PO4)3/C材料在充放电循环过程中的结构稳定性,从而提高其电化学可逆性和稳定性。电化学测试表明,NaTi2(PO4)3/C基于该电解液在100 mA·g-1条件下的可逆容量为93.4 mAh·g-1,循环100次后容量保持率高达96.5%;基于该电解液构建的Na2Ni[Fe(CN)6]|NaTi2(PO4)3/C电池可以稳定循环500次以上。本论文结合XRD、XPS等技术讨论分析了该电解液的功能作用机制,其研究结果为设计低成本高性能水系钠离子电池提供了新思路和实验基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号