首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electronic performance of conjugated polymers depends on the microstructure of the polymer films. A percolated network morphology with high crystallinity, ordered intermolecular packing and long‐range order is beneficial for charge transport. In recent reports, some conjugated polymers have been shown to exhibit liquid crystallinity. The appearance of liquid crystalline ordering provides a new solution to solve the difficulties in microstructure manipulation. In this review, we summarize how liquid crystallinity can assist molecular arrangement and guide long‐range orientation during film processing, leading to high charge mobility. We expect that this article could draw more attention to the liquid crystallinity of conjugated polymers. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1572–1591  相似文献   

2.
Direct arylation polymerization between derivatives of dibromodiketopyrrolopyrrole (DPP) and thienoisoindigo (TIIG) resulted in two π‐conjugated copolymers with average molecular weights up to 24.0 kDa and bandgaps as low as 0.8 eV. The structural analysis of the obtained two polymers revealed well‐defined alternating conjugation backbones without obvious structural defects. The introduction of hexyl‐group in the β‐position of thiophene rings in the DPP units not only reduces the bandgap of conjugated polymer compared to a similar polymer containing bare‐thiophene flanked DPP but also affects polymer morphology in thin films. P‐type charge‐transport characteristics were observed for two polymers in organic field‐effect transistors with comparable hole mobilities. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3205–3213  相似文献   

3.
The most prevalent molecular level structures and structure–property relationships for three basic classes of conjugated polymers are summarized. This discussion encompasses linear unsubstituted conducting polymers and those containing linear side‐chain and branched side‐chain substituents. The impact of these structural attributes on charge transport and photophysics is emphasized. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2630–2648, 2003  相似文献   

4.
Noncovalent functionalization of single‐walled carbon nanotubes (SWNTs) with conjugated polymers enhances SWNT processability and allows for selective dispersion of various SWNT species. Selective dispersions can be obtained by tuning the nature of the polymer, which can involve using various polymer backbones or side‐chains. However, a clear understanding of selectivity determinants is elusive, as the degree of polymerization (DP) has a large effect on SWNT selectivity. Additionally, preparing libraries of conjugated polymers with varying functionality while keeping DP consistent is difficult. Here, we report the utilization of a strained cyclooctyne‐containing conjugated polymer that serves as a versatile scaffold, enabling systematic preparation of a small library of conjugated polymers with different side‐chain functionality, while maintaining a consistent DP. The resulting polymers were used as dispersants for SWNTs, forming supramolecular polymer‐SWNT complexes that were characterized by UV‐Vis‐NIR absorption and Raman spectroscopy. In the series of polymers, we were able to probe the effect of small changes within the side chains, such as the incorporation of a carbonyl group or an aromatic unit, on the quality of the polymer‐SWNT dispersion. The results of these studies provide new insight into the factors that dictate the ability of a polymer to form strong interactions with SWNTs. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2053–2058  相似文献   

5.
We studied the facile synthesis of ortho‐phenylene‐based conjugated polymers through transformation of cross‐conjugated polymers having [2]dendralene moiety, poly(2,3‐diaryl[2]dendralene)s ( P1 s), and demonstrated the sequential synthesis of (Z)‐alkene‐ and ortho‐arylene‐containing conjugated polymers from P1 s. P1 s were transformed into cyclohexa‐1,4‐diene‐containing conjugated polymers ( P2 s) through a Diels–Alder reaction. Aromatization of the cyclohexa‐1,4‐diene skeleton was achieved by using 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone to give the ortho‐phenylene‐containing conjugated polymers ( P3 s). The ultraviolet–visible and fluorescence spectra of the cross‐conjugated polymers P1 s, and the conjugated polymers P2 s and P3 s indicated that the π–π interactions between the arylene moieties in P2 s were stronger than those in P1 s and P3 s. The synthetic method for P2 s and P3 s offers an effective synthesis of various types of (Z)‐alkene‐ and ortho‐arylene‐containing conjugated polymers. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 827–832  相似文献   

6.
A series of donor‐acceptor low‐bandgap conjugated polymers, that is, HThmBT (m = 3, 6, 9, 12, 15), composed of regioregular 3‐hexylthiophene segments and 2,1,3‐benzothiadiazole units, were synthesized through the Stille coupling polymerization to optimize the π‐conjugation length of the polymer and the intramolecular charge transfer (ICT) effect in the polymer backbone. The polymers had relatively low optical bandgaps ranging from 1.6 to 1.72 eV. Among these polymers, HTh6BT exhibited the best device performance with a power conversion efficiency (PCE) of 1.6%. Moreover, despite being based on thiophene, HTh6BT exhibited a high‐open circuit voltage (VOC) of over 0.8 V because of its low high occupied molecular orbital (HOMO) energy level. These results provided an effective strategy for designing and synthesizing low‐bandgap conjugated polymers with broad absorption ranges and well‐balanced energy levels. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
In this work, we report the synthesis, characterization, and application of two regioirregular naphthalenediimide (NDI)‐based alternating conjugated polymers, namely P1 and P2 , in which nitrile‐substituted moiety, 2,3‐bis(thiophen‐2‐yl)acrylonitrile and NDI moiety act as donor and acceptor unit, respectively. The two regioirregular polymers possess low‐lying LUMO energy levels of ?3.92 eV for P1 and ?3.96 eV for P2 . Both polymers possess typical dual‐band UV?Vis?NIR absorption profiles of NDI‐based polymers, and show broadened and red‐shifted absorption spectra in the solid state compared with those in solutions. Field‐effect transistor devices with top‐gate bottom‐contact configuration were used to evaluate the polymers' semiconducting properties. The two polymers exhibited promising and air‐stable ambipolar charge transport characteristics. Thin film microstructure investigations (AFM and 2D‐GIXRD) suggest both polymers formed continuous and smooth thin films, and adopted predominantly face‐on molecular packing in the solid state. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3627–3635  相似文献   

8.
A series of low bandgap conjugated polymers consisting of benzothiadiazole alternating with dithienothiophene (DTT) or dithienopyrrole (DTP) unit with or without 3‐alkylthiophene bridge have been synthesized. Effect of the fused rings and 3‐alkylthiophene bridge on the thermal, optical, electrochemical, charge transport, and photovoltaic properties of these polymers have been investigated. These polymers show broad absorption extending from 300 to 1000 nm with optical bandgaps as low as 1.2 eV; the details of which can be varied either by incorporating 3‐alkylthiophene bridge or by replacing DTT with DTP. The LUMO levels (?2.9 to ?3.3 eV) are essentially unaffected by the specific choice of donor moiety, whereas the HOMO levels (?4.6 to ?5.6 eV) are more sensitive to the choice of donor. The DTT and DTP polymers with 3‐alkylthiophene bridge were found to exhibit hole mobilities of 8 × 10?5 and 3 × 10?2 cm2 V?1 s?1, respectively, in top‐contact organic field‐effect transistors. Power conversion efficiencies in the range 0.17–0.43% were obtained under simulated AM 1.5, 100 mW cm?2 irradiation for polymer solar cells using the DTT and DTP‐based polymers with 3‐alkylthiophene bridge as donor and fullerene derivatives as acceptor. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5498–5508, 2009  相似文献   

9.
Two well‐defined alternating π‐conjugated polymers containing a soluble electroactive benzo[1,2‐b:4,5‐b′]difuran (BDF) chromophore, poly(BDF‐(9‐phenylcarbazole)) (PBDFC), and poly(BDF‐benzothiadiazole) (PBDFBTD) were synthesized via Sonogashira copolymerizations. Their optical, electrochemical, and field‐effect charge transport properties were characterized and compared with those of the corresponding homopolymer PBDF and random copolymers of the same overall composition. All these polymers cover broad optical absorption ranges from 250 to 750 nm with narrow optical band gaps of 1.78–2.35 eV. Both PBDF and PBDFBTD show ambipolar redox properties with HOMO levels of ?5.38 and ?5.09 eV, respectively. The field‐effect mobility of holes varies from 2.9 × 10?8 cm2 V?1 s?1 in PBDF to 1.0 × 10?5 cm2 V?1 s?1 in PBDFBTD. Bulk heterojunction solar cell devices were fabricated using the polymers as the electron donor and [6,6]‐phenyl‐C61‐butyric acid methyl ester as the electron acceptor, leading to power conversion efficiencies of 0.24–0.57% under air mass 1.5 illumination (100 mW cm?2). These results indicate that their band gaps, molecular electronic energy levels, charge mobilities, and molecular weights are readily tuned by copolymerizing the BDF core with different π‐conjugated units. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
共轭高分子材料特异的金属或半导体的电子特性兼有质轻、价廉、易于加工的优点使其在有机场效应晶体管、有机太阳能电池和有机发光二极管等领域显示了重要的应用前景.然而,尽管经过几十年的不断研究,共轭高分子材料种类及其相关器件性能均已得到显著发展,但是共轭高分子材料的本征电荷传输特性仍不清楚,其研究面临巨大挑战,这主要是由共轭高分子材料本身分子量分布弥散、分子间相互缠结以及在常规旋涂薄膜器件中分子高度无序等特性所决定的.从调控共轭高分子聚集态结构的角度出发,不断提高共轭高分子的结构有序性及减小电荷传输过程中的晶界及缺陷密度,是实现共轭高分子材料本征性能认识的有效途径之一.本文首先简单归纳总结了研究者在共轭高分子多尺度聚集态结构调控及性能研究方面的初步结果,进一步结合国内外相关研究进展,重点对共轭高分子晶体方面的工作展开详细介绍,最后对该领域未来发展的挑战及机遇进行了简单评述.  相似文献   

11.
Three‐dimensional (3D) printing brings exciting prospects to the realm of conjugated polymers (CPs) and organic electronics through vastly enhanced design flexibility, structural complexity, and environmental sustainability. However, the use of 3D printing for CPs is still in its infancy and remains full of challenges. In this review, we highlight recent studies that demonstrate proof‐of‐concept strategies to mitigate some of these problems. Two general additive manufacturing approaches are featured: direct ink writing and vat photopolymerization. We conclude with an outlook for this thriving field of research and draw attention to the new possibilities that 3D printing can bring to CPs. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1592–1605  相似文献   

12.
Bulk heterojunctions (BHJs) based on semiconducting electron–donor polymer and electron–acceptor fullerene have been extensively investigated as potential photoactive layers for organic solar cells (OSCs). In the experimental studies, poly‐(3‐hexyl‐thiophene) (P3HT) polymers are hardly monodisperse as the synthesis of highly monodisperse polymer mixture is a near impossible task to achieve. However, the majority of the computational efforts on P3HT: phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM)‐based OSCs, a monodisperse P3HT is usually considered. Here, results from coarse‐grained molecular dynamics simulations of solvent evaporation and thermal annealing process of the BHJ are shared describing the effect of variability in molecular weight (also known as polydispersity) on the morphology of the active layer. Results affirm that polydispersity is beneficial for charge separation as the interfacial area is observed to increase with higher dispersity. Calculations of percolation and orientation tensors, on the other hand, reveal that a certain polydispersity index ranging between 1.05 and 1.10 should be maintained for optimal charge transport. Most importantly, these results point out that the consideration of polydispersity should be considered in computational studies of polymer‐based OSCs. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 895–903  相似文献   

13.
Nonconjugated bipolar transport polymers have been developed as host materials for electroluminescent devices by incorporating both electron‐transporting and hole‐transporting functionalities into copolymers. The random copolymer PCt‐nvk3‐7 containing mesogen‐jacketed segment of P‐Ct have been synthesized and characterized. The effect of mesogen‐jacketed segment content of these bipolar copolymers on device performance has been investigated. The results of polymer light‐emitting diodes (PLEDs) show that the jacketed content of copolymers has a significant effect on device performance: lowering charge transport and facilitating the hole‐electron recombination leads to much higher current efficiency. Applying these high triplet random copolymers as host, the maximum current efficiency of 0.70 cd/A and the maximum brightness of 1872.8 cd/m2 was achieved for PCt‐nvk3‐7 with an orange‐emitting complex dopant. The results suggest that the bipolar copolymers PCt‐nvks can be good host polymers for electrophosphorescent devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7861–7867, 2008  相似文献   

14.
Two donor–acceptor conjugated polymers with azaisoindigo as acceptor units and bithiophene and terthiophene as donor units have been synthesized by Stille polymerization. These two polymers have been successfully applied in field‐effect transistors and polymer solar cells. By changing the donor component of the conjugated polymer backbone from bithiophene to terthiophene, the density of thiophene in the backbone is increased, manifesting as a decrease in both ionization potential and in electron affinity. Therefore, the charge transport in field‐effect transistors switches from ambipolar to predominantly hole transport behavior. PAIIDTT exhibits hole mobility up to 0.40 cm2/Vs and electron mobility of 0.02 cm2/Vs, whereas PAIIDTTT exhibits hole mobility of 0.62 cm2/Vs. Polymer solar cells were fabricated based on these two polymers as donors with PC61BM and PC71BM as acceptor where PAIIDTT shows a modest efficiency of 2.57% with a very low energy loss of 0.55 eV, while PAIIDTTT shows a higher efficiency of 6.16% with a higher energy loss of 0.74 eV. Our results suggest that azaisoindgo is a useful building block for the development of efficient polymer solar cells with further improvement possibility by tuning the alternative units on the polymer backbone. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2691–2699  相似文献   

15.
Two conjugated main‐chain polymers consisting of heteroarene‐fused π‐conjuagted donor moiety alternating with 4,7‐bis(5‐bromo‐4‐octylthiophen‐2‐yl)benzo[c][1,2,5]thiadiazole (P1) or 2,5‐bis(5‐bromo‐4‐octylthiophen‐2‐yl) thiazolo[5,4‐d]thiazole (P2) units have been synthesized. They are intrinsically amorphous in nature and do not exhibit crystalline melting temperatures during thermal analysis. The effect of the fused rings on the thermal, optical, electrochemical, charge transport, and photovoltaic properties of these polymers has been investigated. The polymer (P1) containing 4,7‐bis(5‐bromo‐4‐octylthiophen‐2‐yl)benzo[c][1,2,5] thiadiazole has a broad absorption extending from 300 to 600 nm with optical bandgaps as low as 2.02 eV. The HOMO levels (5.42 to 5.29 eV) are more sensitive to the choice of acceptor. The polymers were employed to fabricate organic photovoltaic cells with methanofullerene [6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM). As a result, the polymer solar cell device containing P1 had the best preliminary results with an open‐circuit voltage of 0.61 V, a short‐circuit current density of 6.19 mA/cm2, and a fill factor of 0.32, offering an overall power conversion efficiency of 1.21%. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

16.
Three poly(N‐vinylcarbazole) (PVK)‐based polymer electrets were synthesized through Friedel‐Crafts postfunctionalization for the function of charge storage in nonvolatile organic field effect transistor (OFET) memory devices. The bulky side chain effect of these stacked polymer electrets on the morphology, water contact angles, and memory characteristics were examined with regard to those of precursor PVK. The introduction of steric hindrance groups could interrupt the large length of π‐stacked structures in PVK and block the form of region‐regular structures from region‐random on external electric field. As a result, the memories based on the three modified polymers exhibited approximate memory windows of 32 V increased by 13 V with respect to PVK. Besides, the write‐read‐erase‐read cycles stability of the modified polymers was superior to that of PVK. Furthermore, we found that the holes were mainly located in the region of local π‐stacked structures and bulky π‐conjugated groups also acted as additional electron trapping sites. Molecular engineering of charge trapping site with tunneling polymers will be a promise strategy for the advance of transistor memory. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3554–3564  相似文献   

17.
18.
The charge transport characteristics of organic semiconductors are one of the key attributes that impacts the performance of organic electronic and optoelectronic devices in which they are utilized. For improved performance in organic photovoltaic cells, light-emitting diodes, and field-effect transistors (FETs), efficient transport of the charge carriers within the organic semiconductor is especially critical. Characterization of charge transport in these organic semiconductors is important both from scientific and technological perspectives. In this review, we shall mainly discuss the techniques for measuring the charge carrier mobility and not the theoretical underpinnings of the mechanism of charge transport. Mobility measurements in organic semiconductors and particularly in conjugated polymers, using space-charge-limited current, time of flight, carrier extraction by linearly increasing voltage, double injection, FETs, and impedance spectroscopy are discussed. The relative merits, as well as limitations for each of these techniques are reviewed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

19.
Charge transport in conjugated polymers may be governed not only by the static microstructure but also fluctuations of backbone segments. Using molecular dynamics simulations, we predict the role of side chains in the backbone dynamics for regiorandom poly(3‐alkylthiophene‐2,5‐diyl)s (P3ATs). We show that the backbone of poly(3‐dodecylthiophene‐2‐5‐diyl) (P3DDT) moves faster than that of poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) as a result of the faster motion of the longer side chains. To verify our predictions, we investigated the structures and dynamics of regiorandom P3ATs with neutron scattering and solid state NMR. Measurements of spin‐lattice relaxations (T1) using NMR support our prediction of faster motion for side chain atoms that are farther away from the backbone. Using small‐angle neutron scattering (SANS), we confirmed that regiorandom P3ATs are amorphous at about 300 K, although microphase separation between the side chains and backbones is apparent. Furthermore, quasi‐elastic neutron scattering (QENS) reveals that thiophene backbone motion is enhanced as the side chain length increases from hexyl to dodecyl. The faster motion of longer side chains leads to faster backbone dynamics, which in turn may affect charge transport for conjugated polymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1193–1202  相似文献   

20.
Synthesis of n‐type organic semiconductors with high electron mobilities, good environmental stability, and good processability is an urgent task in current organic electronics. This is because most of π‐conjugated materials are p‐type and prefer to transport positive hole carriers. In this article, a series of new dicarboxylic imide‐substituted poly(p‐phenylene vinylenes) (DI‐PPVs) were first synthesized. They exhibited a high electron affinity of 3.60 eV and thus are able to transport electrons. The polymers showed tunable solubility in common organic solvents and high chemical and thermal stability. They remain rigidity of the PPV backbone, and strong interchain π‐stacking was observed in thin films by X‐ray diffraction measurement. All these suggested that these polymers could serve as good candidates as n‐type semiconductors in organic electronic devices such as n‐channel field‐effect transistors and all polymer‐based solar cells. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 186–194, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号