首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
There have been recent reports on the formation of single‐halide perovskites, CH3NH3PbX3 (X=Cl, Br, I), by means of vapor‐assisted solution processing. Herein, the successful formation of mixed‐halide perovskites (CH3NH3PbI3?xXx) by means of a vapor‐assisted solution method at ambient atmosphere is reported. The perovskite films are synthesized by exposing PbI2 film to CH3NH3X (X=I, Br, or Cl) vapor. The prepared perovskite films have uniform surfaces with good coverage, as confirmed by SEM images. The inclusion of chlorine and bromine into the structure leads to a lower temperature and shorter reaction time for optimum perovskite film formation. In the case of CH3NH3PbI3?xClx, the optimum reaction temperature is reduced to 100 °C, and the resulting phases are CH3NH3PbI3 (with trace Cl) and CH3NH3PbCl3 with a ratio of about 2:1. In the case of CH3NH3PbI3?xBrx, single‐phase CH3NH3PbI2Br is formed in a considerably shorter reaction time than that of CH3NH3PbI3. The mesostructured perovskite solar cells based on CH3NH3PbI3 films show the best optimal power conversion efficiency of 13.5 %, whereas for CH3NH3PbI3?xClx and CH3NH3PbI3?xBrx the best recorded efficiencies are 11.6 and 10.5 %, respectively.  相似文献   

2.
An experimental and theoretical investigation is reported to analyze the relation between the structural and absorption properties of CH3NH3PbI3 in the tetragonal phase. More than 3000 geometry optimizations were performed to reveal the structural disorder and identify structures with the lowest energies. The electronic structure calculations provide an averaged band gap of 1.674 eV, which is in excellent agreement with the experimental value of about 1.6 eV. The simulations of the absorption spectrum for three representative structures with lowest energy reproduced the absorption shoulders observed in the experimental spectra. These shoulders are assigned to excitations having similar orbital characters and involving transitions between hybridized 6s(Pb)/5p(I) orbitals and 6p(Pb) orbitals. The geometries of the three structures were analyzed and the effects of the inorganic frame and the CH3NH3+ cations on the absorption properties were estimated. It was found that both changes in the inorganic frame and the CH3NH3+ cations orientations impact the absorption spectra, by modifying the transitions energies and intensities. This highlights the role of CH3NH3+ cation in influencing the absorption properties of CH3NH3PbI3 and demonstrates that CH3NH3+ cation is one of the key elements explaining the broad and nearly constant absorption spectrum in the visible range.  相似文献   

3.
《中国化学会会志》2019,66(6):569-569
In this paper , the structural and electronic properties of the tetragonal and cubic phases of methylammonium lead iodide (CH3NH3PbI3) perovskites are investigated by DFT calculations. Mainly, the effects of substitution of anions and mixed anions (CH3NH3PbI2X) on the stability of the cubic phase perovskites are also reported. More details about this figure will be discussed by Prof. Jyh‐Chiang Jiang and his co‐workers on page 575–582 in this issue

  相似文献   


4.
Methylammonium (CH3NH3+) and formamidinium ((NH2)2CH+) based lead iodide perovskites are currently the two commonly used organic–inorganic lead iodide perovskites. There are still no alternative organic cations that can produce perovskites with band gaps spanning the visible spectrum (that is, <1.7 eV) for solar cell applications. Now, a new perovskite using large propane‐1,3‐diammonium cation (1,3‐Pr(NH3)22+) with a chemical structure of (1,3‐Pr(NH3)2)0.5PbI3 is demonstrated. X‐ray diffraction (XRD) shows that the new perovskite exhibits a three‐dimensional tetragonal phase. The band gap of the new perovskite is about 1.6 eV, which is desirable for photovoltaic applications. A (1,3‐Pr(NH3)2)0.5PbI3 perovskite solar cell (PSC) yields a power conversion efficiency (PCE) of 5.1 %. More importantly, this perovskite is composed of a large hydrophobic cation that provides better moisture resistance compared to CH3NH3PbI3 perovskite.  相似文献   

5.
The long-term stability remains one of the main challenges for the commercialization of the rapidly developing hybrid organic-inorganic perovskite solar cells. Herein, we investigate the electronic and optical properties of the recently reported hybrid halide perovskite (CH2)2NH2PbI3 (AZPbI3), which exhibits a much better stability than the popular halide perovskites CH3NH3PbI3 and HC(NH2)2PbI3, by using density functional theory (DFT). We find that AZPbI3 possesses a band gap of 1.31 eV, ideal for single-junction solar cells, and its optical absorption is comparable with those of the popular CH3NH3PbI3 and HC(NH2)2PbI3 materials in the whole visible-light region. In addition, the conductivity of AZPbI3 can be tuned from efficient p-type to n-type, depending on the growth conditions. Besides, the charge-carrier mobilities and lifetimes are unlikely hampered by deep transition energy levels, which have higher formation energies in AZPbI3 according to our calculations. Overall, we suggest that the perovskite AZPbI3 is an excellent candidate as a stable high-performance photovoltaic absorber material.  相似文献   

6.
The interfacial electronic structure of perovskite layers and transport layers is critical for the performance and stability of perovskite solar cells (PSCs). The device performance of PSCs can generally be improved by adding a slight excess of lead iodide (PbI2) to the precursor solution. However, its underlying working mechanism is controversial. Here, we performed a comprehensive study of the electronic structures at the interface between CH3NH3PbI3 and C60 with and without the modification of PbI2 using in situ photoemission spectroscopy measurements. The correlation between the interfacial structures and the device performance was explored based on performance and stability tests. We found that there is an interfacial dipole reversal, and the downward band bending is larger at the CH3NH3PbI3/C60 interface with the modification of PbI2 as compared to that without PbI2. Therefore, PSCs with PbI2 modification exhibit faster charge carrier transport and slower carrier recombination. Nevertheless, the modification of PbI2 undermines the device stability due to aggravated iodide migration. Our findings provide a fundamental understanding of the CH3NH3PbI3/C60 interfacial structure from the perspective of the atomic layer and insight into the double-edged sword effect of PbI2 as an additive.  相似文献   

7.
We investigate the degradation path of MAPbI3 (MA=methylammonium) films over flat TiO2 substrates at room temperature by means of X‐ray diffraction, spectroscopic ellipsometry, X‐ray photoelectron spectroscopy, and high‐resolution transmission electron microscopy. The degradation dynamics is found to be similar in air and under vacuum conditions, which leads to the conclusion that the occurrence of intrinsic thermodynamic mechanisms is not necessarily linked to humidity. The process has an early stage, which drives the starting tetragonal lattice in the direction of a cubic atomic arrangement. This early stage is followed by a phase change towards PbI2. We describe how this degradation product is structurally coupled with the original MAPbI3 lattice through the orientation of its constituent PbI6 octahedra. Our results suggest a slight octahedral rearrangement after volatilization of HI+CH3NH2 or MAI, with a relatively low energy cost. Our experiments also clarify why reducing the interfaces and internal defects in the perovskite lattice enhances the stability of the material.  相似文献   

8.
Mesoscopic perovskite solar cells using stable CH3NH3PbI2Br as a light absorber and low‐cost poly(3‐hexylthiophene) (P3HT) as hole‐transporting layer were fabricated, and a power conversion efficiency of 6.64 % was achieved. The partial substitution of iodine with bromine in the perovskite led to remarkably prolonged charge carrier lifetime. Meanwhile, the replacement of conventional thick spiro‐MeOTAD layer with a thin P3HT layer has significantly reduced the fabrication cost. The solar cells retained their photovoltaic performance well when they were exposed to air without any encapsulation, presenting a favorable stability. The combination of CH3NH3PbI2Br and P3HT may render a practical and cost‐effective solid‐state photovoltaic system. The superior stability of CH3NH3PbI2Br is also promising for other photoconversion applications.  相似文献   

9.
E. Taskinen  E. Sainio 《Tetrahedron》1976,32(5):593-595
Thermodynamics of geometrical and prototropic isomerization reactions on some halogen-containing vinyl ethers of the types ROCH–CHX (X = Cl, Br), ROC(CH2X)CH2 (X = F, Cl, Br), and ROC(CHMeCl)CH2 (R = Me, Et, Et2CH) have been studied. In ROCHαCHβX the cis (or Z) isomer is thermodynamically the more stable isomer, the higher stability of the Z isomer being due to its lower enthalpy. The relative stability of the E and Z forms is, however, reversed if the α H atom is replaced by a Me group. In systems like OCCX the double-bond stabilizing ability of the halogen atom decreases in the order Cl > Br > F, in contrast to the case in haloalkenes, where the corresponding order is F > Cl > Br.  相似文献   

10.
Methylammonium lead iodide (CH3NH3PbI3) perovskite compound has produced a remarkable breakthrough in the photovoltaic history of solar cell technology because of its outstanding device‐based performance as a light‐harvesting semiconductor. Whereas the experimental and theoretical studies of this system in the solid state have been numerously reported in the last 4 years, its fundamental cluster physics is yet to be exploited. To this end, this study has performed theoretical investigations using DFT‐M06‐2X/ADZP to examine the principal geometrical, electronic, topological, and orbital properties of the CH3NH3PbI3 molecular building block. The intermolecular hydrogen bonded interactions examined for the most important conformers of the system are found to be unusually strong, with binding energies lying between −93.53 and −125.11 kcal mol−1 (beyond the covalent limit, −40 kcal mol−1), enabling us to classify the underlying interactions as ultra‐strong type since their characteristic properties are unidentical with those have already been proposed as very strong, strong, moderate, weak, and van der Waals. Based on this, together with the unusually high charge transfers, strong hyperconjugative interactions, sophisticated topologies of the charge density, and short intermolecular distances of separation, we have characterized the conformers of CH3NH3PbI3 as Mulliken inner complexes. The consequences of these, as well as of the ultra‐strong interactions, in designing novel functional nanomaterials are outlined. © 2017 Wiley Periodicals, Inc.  相似文献   

11.
We show that the onset pressure for appreciable conductivity in layered copper‐halide perovskites can decrease by ca. 50 GPa upon replacement of Cl with Br. Layered Cu–Cl perovskites require pressures >50 GPa to show a conductivity of 10?4 S cm?1, whereas here a Cu–Br congener, (EA)2CuBr4 (EA=ethylammonium), exhibits conductivity as high as 2×10?3 S cm?1 at only 2.6 GPa, and 0.17 S cm?1 at 59 GPa. Substitution of higher‐energy Br 4p for Cl 3p orbitals lowers the charge‐transfer band gap of the perovskite by 0.9 eV. This 1.7 eV band gap decreases to 0.3 eV at 65 GPa. High‐pressure X‐ray diffraction, optical absorption, and transport measurements, and density functional theory calculations allow us to track compression‐induced structural and electronic changes. The notable enhancement of the Br perovskite's electronic response to pressure may be attributed to more diffuse Br valence orbitals relative to Cl orbitals. This work brings the compression‐induced conductivity of Cu‐halide perovskites to more technologically accessible pressures.  相似文献   

12.
Highly spin-polarized ferromagnetic materials are essential for efficient spintronic devices. Here, 100% spin-polarized compounds Rb2TaZ6 (Z = Cl, Br) studied via density functional theory are reported. These compounds show stability in the ferromagnetic phase with cubic symmetry and half metallic behavior, thereby exhibiting a nonzero direct band gap in the spin-down channel and zero band gap in the spin-up configuration. The Ta-d sates contribute mainly to the net magnetic moments as explained by the crystal field theory and density of states. High Curie temperatures of 960.35 and 1021.74 K for Ra2TaCl6 and Rb2TaBr6, along with maximum spin polarizability, make these compounds favorable for efficient spintronic applications.  相似文献   

13.
The reactions of the methylhalogenodimethylaminoarsines CH3As-[N(CH3)2]X (X  F, Cl, Br, I) with HY (Y = Cl, Br) yield the methyldihalogenoarsines CH3AsXY. The compounds CH3As[N(CH3)2]X are prepared by the reactions of CH3AsCl2 with HN(CH3)2, CH3As[N(CH3)2]2 with HX (X = Cl, Br) and by exchange reactions between CH3As[N(CH3)2]2 and CH3AsX2 (X = F, Cl, Br, I).  相似文献   

14.
Methylammonium lead trihalides and their derivatives are photovoltaic materials. CH3NH3PbI3 is the most efficient light harvester among all the known halide perovskites (PSCs). It is regarded as unsuitable for long‐term stable solar cells, thus it is necessary to develop other types of PSC materials to achieve stable PSCs (Wang et al., Nat. Energy 2016, 2, 16195). Because of this, various research efforts are on‐going to discover novel lead‐based or lead‐free single/double PSCs, which can be stable, synthesizable, transportable, abundant and efficient in solar energy conversion. Keeping these factors in mind, we report here the electronic structures, energetic stabilities and some materials properties (viz. band structures, density of states spectra and photo‐carrier masses) of the PSC chloroammonium lead triiodide (ClNH3PbI3). This emerges through compositional engineering that often focuses on B‐ and Y‐site substitutions within the domain of the BMY3 PSC stoichiometry. ClNH3PbI3 is found to be stable as orthorhombic and pseudocubic polymorphs, which are analogous with the low and high temperature polymorphs of CH3NH3PbI3. The bandgap of ClNH3PbI3 (values between 1.28 and 1.60 eV) is found to be comparable with that of CH3NH3PbI3, (1.58 eV), both obtained with periodic DFT at the PBE level of theory. Spin orbit coupling is shown to have a pronounced effect on both the magnitude and character of the bandgap. The computed results show that ClNH3PbI3 may act as a competitor for CH3NH3PbI3 for photovoltaics. © 2018 Wiley Periodicals, Inc.  相似文献   

15.
The structural and electronic properties of the PZT materials PbZr0.5Ti0.5O3 and PbZr0.375Ti0.625O3 were studied by means of a Hartree–Fock quantum chemical semiempirical method that employs a periodic large unit cell (LUC) model. The atomic relaxation observed upon introduction of the Zr impurities resulted in outward oxygen atom displacements along the 〈100〉 direction for the cubic phases and varied oxygen and lead atom movements for the tetragonal structures. For these materials, the conduction bands (CB) were composed mainly of Pb 6p atomic orbitals with less important contributions of Zr 4d and Ti 3d states. The upper valence band (UVB) for the cubic phases was mostly Pb 6s in nature, with minor contribution of O 2p atomic orbitals. The tetragonal phase on the other hand was formed by Pb 6s with some contribution of admixed O 2p with Zr s atomic orbitals. The optical band gap (ΔSCF method) was found to decrease going from the cubic to the tetragonal phase in both titanates. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 95: 37–43, 2003  相似文献   

16.
采用一步法分别制备了Sn类CH3NH3Sn I3和Pb类CH3NH3Pb I3钙钛矿太阳电池薄膜材料,并对其表面形貌、微观结构、吸收光谱和电池器件性能进行了表征和测试。研究结果表明:Sn类钙钛矿材料的吸收光谱相对于Pb类钙钛矿材料发生了明显的红移,吸收截止波长从800 nm上升到950 nm左右,光学带隙由1.45 e V降低至1.21 e V左右;Sn类钙钛矿材料的光谱吸收范围明显扩大,但吸收强度有所降低,相应太阳电池器件的光电转换效率也明显低于Pb类钙钛矿太阳电池,分别为2.05%和6.71%。而Br的掺杂可使Sn类钙钛矿材料带隙变宽,吸收光子能量增大,电池器件的开路电压也相应提高。当Br含量由0增加至完全替代I时,Sn类钙钛矿材料逐渐由黑褐色转变为黄色,光学带隙增大至1.95 e V,但吸收截止波长由950 nm降低至650nm。值得提及的是当Br含量为0.5时,电池器件的光电转换效率可由最初的2.05%提升至2.94%。  相似文献   

17.
The synthesis, characterization, and mesomorphic properties of a new type of heterocyclic compounds 1, 2 derived from benzoxazole are reported. In order to understand the relationship between the structure and the mesomorphic behavior, compounds containing a variety of polar substituents (i.e., X=H, F, Cl, Br, CH3, CF3, OCH3, NO2, CN, OH, NMe2, COOCH3) on the terminal end were prepared. The phase behavior of these mesogenic compounds was characterized and studied by differential scanning calorimetry (DSC) and polarization optical microscopy. The formation of mesophases was strongly dependent on the electronic and/or the steric factors of the substituents. In general, a mesophase was better induced by introduction of a polar substituent. Compounds (X=H) formed a crystalline phase, however, other compounds, except for X=OH, exhibited nematic or smectic A phases. Interestingly all compounds with electron-donating substituents (X=CH3, OCH3, NMe2) exhibited nematic phases, however, other compounds with electron-withdrawing substituents (X=F, Cl, Br, CF3, NO2, CN, COOCH3) formed smectic A phases. Compounds (X=NO2, CN, COOCH3) have higher clearing temperatures than those of other homologues, and the higher Tcl was attributed to an enhanced conjugative interaction. However, no linear correlation between the clearing temperature or the temperature range of mesophases with Hammett σp constants was found. The fluorescent properties of the compounds were examined. All λmax peaks of the absorption and photoluminescence spectra of compounds occurred at ca. 348-381 and 389-478 nm, respectively. Whereas, the quantum yields of some compounds were relatively low.  相似文献   

18.
Methylamine‐induced thin‐film transformation at room‐temperature is discovered, where a porous, rough, polycrystalline NH4PbI3 non‐perovskite thin film converts stepwise into a dense, ultrasmooth, textured CH3NH3PbI3 perovskite thin film. Owing to the beneficial phase/structural development of the thin film, its photovoltaic properties undergo dramatic enhancement during this NH4PbI3‐to‐CH3NH3PbI3 transformation process. The chemical origins of this transformation are studied at various length scales.  相似文献   

19.
Infrared (4000?200 cm?1) and Raman (3500?50 cm?1) spectra are reported for metal(II) halide aniline complexes of the following stoichiometries: (MX2an2) (M  Co, Ni or Hg, X  Cl; M  Mn, X  Cl or Br; M  Zn or Cd, X  Cl, Br or I); (MX2an3) (M  Mn, X  Cl or Br; M  Ni, X  Cl); (CdCl2an) and an assignment is proposed for all the observed bands. Low-temperature (83 K) IR spectra are also reported and it is noted that whilst the aniline ring and CH mode values are virtually insensitive to temperature, the NH2 rocking and metal-ligand stretching mode values increase with decreasing temperature, whilst the NH2 stretching mode values decrease with decreasing temperature.  相似文献   

20.
Organometal trihalide perovskites have recently gained extreme attention due to their high solar energy conversion in photovoltaic cells. Here, we investigate the contribution of iodide ions to a total conductivity of the mixed lead halide perovskite CH3NH3PbI3−xClx with a use of the modified DC Hebb–Wagner polarization method. It has been identified that an ionic conductivity dominates in tetragonal phase which is associated with room temperature. The obtained activation energy for this type of hopping mechanism is equal to (0.87 ± 0.02) eV, which is in a good agreement with previous literature reports. The high contribution of ionic conductivity at room temperature might be a reason of the observed hysteresis in halide perovskite solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号