首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We show that the onset pressure for appreciable conductivity in layered copper-halide perovskites can decrease by ca. 50 GPa upon replacement of Cl with Br. Layered Cu–Cl perovskites require pressures >50 GPa to show a conductivity of 10−4 S cm−1, whereas here a Cu–Br congener, (EA)2CuBr4 (EA=ethylammonium), exhibits conductivity as high as 2×10−3 S cm−1 at only 2.6 GPa, and 0.17 S cm−1 at 59 GPa. Substitution of higher-energy Br 4p for Cl 3p orbitals lowers the charge-transfer band gap of the perovskite by 0.9 eV. This 1.7 eV band gap decreases to 0.3 eV at 65 GPa. High-pressure X-ray diffraction, optical absorption, and transport measurements, and density functional theory calculations allow us to track compression-induced structural and electronic changes. The notable enhancement of the Br perovskite's electronic response to pressure may be attributed to more diffuse Br valence orbitals relative to Cl orbitals. This work brings the compression-induced conductivity of Cu-halide perovskites to more technologically accessible pressures.  相似文献   

2.
Despite their compositional versatility, most halide double perovskites feature large band gaps. Herein, we describe a strategy for achieving small band gaps in this family of materials. The new double perovskites Cs2AgTlX6 (X=Cl ( 1 ) and Br ( 2 )) have direct band gaps of 2.0 and 0.95 eV, respectively, which are approximately 1 eV lower than those of analogous perovskites. To our knowledge, compound 2 displays the lowest band gap for any known halide perovskite. Unlike in AIBIIX3 perovskites, the band‐gap transition in AI2BB′X6 double perovskites can show substantial metal‐to‐metal charge‐transfer character. This band‐edge orbital composition is used to achieve small band gaps through the selection of energetically aligned B‐ and B′‐site metal frontier orbitals. Calculations reveal a shallow, symmetry‐forbidden region at the band edges for 1 , which results in long (μs) microwave conductivity lifetimes. We further describe a facile self‐doping reaction in 2 through Br2 loss at ambient conditions.  相似文献   

3.
Two‐dimensional (2D) halide perovskites have attracted significant attention due to their compositional flexibility and electronic diversity. Understanding the structure–property relationships in 2D double perovskites is essential for their development for optoelectronic applications. In this work, we observed the emergence of pressure‐induced emission (PIE) at 2.5 GPa with a broad emission band and large Stokes shift from initially nonfluorescent (BA)4AgBiBr8 (BA=CH3(CH2)3NH3+). The emission intensity increased significantly upon further compression up to 8.2 GPa. Moreover, the band gap narrowed from the starting 2.61 eV to 2.19 eV at 25.0 GPa accompanied by a color change from light yellow to dark yellow. Analysis of combined in situ high‐pressure photoluminescence, absorption, and angle‐dispersive X‐ray diffraction data indicates that the observed PIE can be attributed to the emission from self‐trapped excitons. This coincides with [AgBr6]5? and [BiBr6]3? inter‐octahedral tilting which cause a structural phase transition. High‐pressure study on (BA)4AgBiBr8 sheds light on the relationship between the structure and optical properties that may improve the material's potential applications in the fields of pressure sensing, information storage and trademark security.  相似文献   

4.
The perovskite (BA)4[CuII(CuIInIII)0.5]Cl8 ( 1BA ; BA+=butylammonium) allows us to study the high-pressure structural, optical, and transport properties of a mixed-valence 2D perovskite. Compressing 1BA reduces the onset energy of CuI/II intervalence charge transfer from 1.2 eV at ambient pressure to 0.2 eV at 21 GPa. The electronic conductivity of 1BA increases by 4 orders of magnitude upon compression to 20 GPa, when the activation energy for conduction decreases to 0.16 eV. In contrast, CuII perovskites achieve similar conductivity at ≈50 GPa. The solution-state synthesis of these perovskites is complicated, with more undesirable side products likely from the precursor mixtures containing three different metal ions. To circumvent this problem, we demonstrate an efficient mechanochemical synthesis to expand this family of halide perovskites with complex composition by simply pulverizing together powders of 2D CuII single perovskites and CuIInIII double perovskites.  相似文献   

5.
Recently, CuI‐ and AgI‐based halide double perovskites have been proposed as promising candidates for overcoming the toxicity and instability issues inherent within the emerging Pb‐based halide perovskite absorbers. However, up to date, only AgI‐based halide double perovskites have been experimentally synthesized; there are no reports on successful synthesis of CuI‐based analogues. Here we show that, owing to the much higher energy level for the Cu 3d10 orbitals than for the Ag 4d10 orbitals, CuI atoms energetically favor 4‐fold coordination, forming [CuX4] tetrahedra (X=halogen), but not 6‐fold coordination as required for [CuX6] octahedra. In contrast, AgI atoms can have both 6‐ and 4‐fold coordinations. Our density functional theory calculations reveal that the synthesis of CuI halide double perovskites may instead lead to non‐perovskites containing [CuX4] tetrahedra, as confirmed by our material synthesis efforts.  相似文献   

6.
Double perovskites (DPs) with a generic formula A2M′(I)MIIIX6 (A and M are metal ions, and X=Cl, Br, I) are now being explored as potential alternatives to Pb‐halide perovskites for solar cells and other optoelectronic applications. However, these DPs typically suffer from wide (≈3 eV) and/or indirect band gaps. In 2017, a new structural variety, namely layered halide DP Cs4CuSb2Cl12 (CCSC) with bivalent CuII ion in the place of M′(I) was reported, which exhibit a band gap of approximately 1 eV. Here, we report a mechanochemical synthesis of CCSC, its thermal and chemical stability, and magnetic response of CuII d9 electrons controlling the optoelectronic properties. A simple grinding of precursor salts at ambient conditions provides a stable and scalable product. CCSC is stable in water/acetone solvent mixtures (≈30 % water) and many other polar solvents unlike Pb‐halide perovskites. It decomposes to Cs3Sb2Cl9, Cs2CuCl4, and SbCl3 at 210 °C, but the reaction can be reversed back to produce CCSC at lower temperatures and high humidity. A long‐range magnetic ordering is observed in CCSC even at room temperature. The role of such magnetic ordering in controlling the dispersion of the conduction band, and therefore, controlling the electronic and optoelectronic properties of CCSC has been discussed.  相似文献   

7.
Layered p‐block metal chalcogenides are renowned for thermoelectric energy conversion due to their low thermal conductivity caused by bonding asymmetry and anharmonicity. Recently, single crystalline layered SnSe has created sensation in thermoelectrics due to its ultralow thermal conductivity and high thermoelectric figure of merit. Tin diselenide (SnSe2), an additional layered compound belonging to the Sn‐Se phase diagram, possesses a CdI2‐type structure. However, synthesis of pure‐phase bulk SnSe2 by a conventional solid‐state route is still remains challenging. A simple solution‐based low‐temperature synthesis is presented of ultrathin (3–5 nm) few layers (4–6 layers) nanosheets of Cl‐doped SnSe2, which possess n‐type carrier concentration of 2×1018 cm?3 with carrier mobility of about 30 cm2 V?1 s?1 at room temperature. SnSe2 has a band gap of about 1.6 eV and semiconducting electronic transport in the 300–630 K range. An ultralow thermal conductivity of about 0.67 Wm?1 K?1 was achieved at room temperature in a hot‐pressed dense pellet of Cl‐doped SnSe2 nanosheets due to the anisotropic layered structure, which gives rise to effective phonon scattering.  相似文献   

8.
Although two‐dimensional (2D) metal–halide double perovskites display versatile physical properties due to their huge structural compatibility, room‐temperature ferroelectric behavior has not yet been reported for this fascinating family. Here, we designed a room‐temperature ferroelectric material composed of 2D halide double perovskites, (chloropropylammonium)4AgBiBr8, using an organic asymmetric dipolar ligand. It exhibits concrete ferroelectricity, including a Curie temperature of 305 K and a notable spontaneous polarization of ≈3.2 μC cm?2, triggered by dynamic ordering of the organic cation and the tilting motion of heterometallic AgBr6/BiBr6 octahedra. Besides, the alternating array of inorganic perovskite sheets and organic cations endows large mobility‐lifetime product (μτ=1.0×10?3 cm2 V?1) for detecting X‐ray photons, which is almost tenfold higher than that of CH3NH3PbI3 wafers. As far as we know, this is the first study on an X‐ray‐sensitive ferroelectric material composed of 2D halide double perovskites. Our findings afford a promising platform for exploring new ferroelectric materials toward further device applications.  相似文献   

9.
All-solid-state rechargeable lithium-ion batteries (AS-LIBs) are attractive power sources for electrochemical applications due to their potentiality in improving safety and stability over conventional batteries with liquid electrolytes. Finding a solid electrolyte with high ionic conductivity and compatibility with other battery components is a key factor in raising the performance of AS-LIBs. In this work, we prepare argyrodite-type Li6PS5X (X = Cl, Br, I) using mechanical milling followed by annealing. X-ray diffraction characterization reveals the formation and growth of crystalline Li6PS5X in all cases. Ionic conductivity of the order of 7?×?10?4 S cm?1 in Li6PS5Cl and Li6PS5Br renders these phases suitable for AS-LIBs. Joint structure refinements using high-resolution neutron and laboratory X-ray diffraction provide insight into the influence of disorder on the fast ionic conductivity. Besides the disorder in the lithium distribution, it is the disorder in the S2?/Cl? or S2?/Br? distribution that we find to promote ion mobility, whereas the large I? cannot be exchanged for S2? and the resulting more ordered Li6PS5I exhibits only a moderate conductivity. Li+ ion migration pathways in the crystalline compounds are modelled using the bond valence approach to interpret the differences between argyrodites containing different halide ions.  相似文献   

10.
We report a family of cationic lead halide layered materials, formulated as [Pb2X2]2+[O2C(CH)2CO2] (X=F, Cl, Br), exhibiting pronounced broadband white‐light emission in bulk form. These well‐defined PbX‐based structures achieve an external quantum efficiency as high as 11.8 %, which is comparable to the highest reported value (ca.9 %) for broadband phosphors based on layered organolead halide perovskites. More importantly, our cationic materials are ultrastable lead halide materials, which overcome the air/moisture‐sensitivity problems of lead perovskites. In contrast to the perovskites and other bulk emitters, the white‐light emission intensity of our materials remains undiminished after continuous UV irradiation for 30 days under atmospheric conditions (ca.60 % relative humidity). Our mechanistic studies confirm that the broadband emission is ascribed to short‐range electron‐phonon coupling in the strongly deformable lattice and generated self‐trapped carriers.  相似文献   

11.
Low‐toxicity, air‐stable bismuth‐based perovskite materials are attractive substitutes for lead halide perovskites in photovoltaic and optoelectronic devices. The structural, optical, and electrical property changes of zero‐dimensional perovskite Cs3Bi2I9 resulting from lattice compression is presented. An emission enhancement under mild pressure is attributed to the increase in exciton binding energy. Unprecedented band gap narrowing originated from Bi−I bond contraction, and the decrease in bridging Bi‐I‐Bi angle enhances metal halide orbital overlap, thereby breaking through the Shockley–Queisser limit under relatively low pressure. Pressure‐induced structural evolutions correlate well with changes in optical properties, and the changes are reversible upon decompression. Considerable resistance reduction implies a semiconductor‐to‐conductor transition at ca. 28 GPa, and the final confirmed metallic character by electrical experiments indicates a wholly new electronic property.  相似文献   

12.
We report a family of cationic lead halide layered materials, formulated as [Pb2X2]2+[O2C(CH)2CO2] (X=F, Cl, Br), exhibiting pronounced broadband white‐light emission in bulk form. These well‐defined PbX‐based structures achieve an external quantum efficiency as high as 11.8 %, which is comparable to the highest reported value (ca.9 %) for broadband phosphors based on layered organolead halide perovskites. More importantly, our cationic materials are ultrastable lead halide materials, which overcome the air/moisture‐sensitivity problems of lead perovskites. In contrast to the perovskites and other bulk emitters, the white‐light emission intensity of our materials remains undiminished after continuous UV irradiation for 30 days under atmospheric conditions (ca.60 % relative humidity). Our mechanistic studies confirm that the broadband emission is ascribed to short‐range electron‐phonon coupling in the strongly deformable lattice and generated self‐trapped carriers.  相似文献   

13.
Low‐toxicity, air‐stable bismuth‐based perovskite materials are attractive substitutes for lead halide perovskites in photovoltaic and optoelectronic devices. The structural, optical, and electrical property changes of zero‐dimensional perovskite Cs3Bi2I9 resulting from lattice compression is presented. An emission enhancement under mild pressure is attributed to the increase in exciton binding energy. Unprecedented band gap narrowing originated from Bi?I bond contraction, and the decrease in bridging Bi‐I‐Bi angle enhances metal halide orbital overlap, thereby breaking through the Shockley–Queisser limit under relatively low pressure. Pressure‐induced structural evolutions correlate well with changes in optical properties, and the changes are reversible upon decompression. Considerable resistance reduction implies a semiconductor‐to‐conductor transition at ca. 28 GPa, and the final confirmed metallic character by electrical experiments indicates a wholly new electronic property.  相似文献   

14.
Environmentally friendly halide double perovskites with improved stability are regarded as a promising alternative to lead halide perovskites. The benchmark double perovskite, Cs2AgBiBr6, shows attractive optical and electronic features, making it promising for high‐efficiency optoelectronic devices. However, the large band gap limits its further applications, especially for photovoltaics. Herein, we develop a novel crystal‐engineering strategy to significantly decrease the band gap by approximately 0.26 eV, reaching the smallest reported band gap of 1.72 eV for Cs2AgBiBr6 under ambient conditions. The band‐gap narrowing is confirmed by both absorption and photoluminescence measurements. Our first‐principles calculations indicate that enhanced Ag–Bi disorder has a large impact on the band structure and decreases the band gap, providing a possible explanation of the observed band‐gap narrowing effect. This work provides new insights for achieving lead‐free double perovskites with suitable band gaps for optoelectronic applications.  相似文献   

15.
6,6′′‐Bis(2,4,6‐trimethylanilido)terpyridine (H2TpyNMes) was prepared as a rigid, tridentate pincer ligand containing pendent anilines as hydrogen bond donor groups in the secondary coordination sphere. The coordination geometry of (H2TpyNMes)copper(I)‐halide (Cl, Br and I) complexes is dictated by the strength of the NH–halide hydrogen bond. The CuICl and CuIICl complexes are nearly isostructural, the former presenting a highly unusual square‐planar geometry about CuI. The geometric constraints provided by secondary interactions are reminiscent of blue copper proteins where a constrained geometry, or entatic state, allows for extremely rapid CuI/CuII electron‐transfer self‐exchange rates. Cu(H2TpyNMes)Cl shows similar fast electron transfer (≈105 m ?1 s?1) which is the same order of magnitude as biological systems.  相似文献   

16.
The ionic conductivity properties of the face‐centered cubic [Ni8(OH)4(H2O)2(BDP_X)6] (H2BDP_X=1,4‐bis(pyrazol‐4‐yl)benzene‐4‐X with X=H ( 1 ), OH ( 2 ), NH2 ( 3 )) metal–organic framework (MOF) systems as well as their post‐synthetically modified materials K[Ni8(OH)5(EtO)(BDP_X)5.5] ( 1@KOH , 3@KOH ) and K3[Ni8(OH)3(EtO)(BDP_O)5] ( 2@KOH ), which contain missing‐linker defects, have been studied by variable temperature AC impedance spectroscopy. It should be noted that these modified materials exhibit up to four orders of magnitude increase in conductivity values in comparison to pristine 1 – 3 systems. As an example, the conductivity value of 5.86×10?9 S cm?1 (activation energy Ea of 0.60 eV) for 2 at 313 K and 22 % relative humidity (RH) increases up to 2.75×10?5 S cm?1 (Ea of 0.40 eV) for 2@KOH . Moreover, a further increase of conductivity values up to 1.16×10?2 S cm?1 and diminution of Ea down to 0.20 eV is achieved at 100 % RH for 2@KOH . The increased porosity, basicity and hydrophilicity of the 1@KOH – 3@KOH materials compared to the pristine 1 – 3 systems should explain the better performance of the KOH‐modified materials.  相似文献   

17.
Two‐dimensional (2D) AA′n?1MnX3n+1 type halide perovskites incorporating straight‐chain symmetric diammonium cations define a new type of structure, but their optoelectronic properties are largely unexplored. Reported here is the synthesis of a centimeter‐sized AA′n?1MnX3n+1 type perovskite, BDAPbI4 (BDA=NH3C4H8NH3), single crystal and its charge‐transport properties under X‐ray excitation. The crystal shows a staggered configuration of the [PbI6]4? layers, a band gap of 2.37 eV, and a low trap density of 3.1×109 cm?3. The single‐crystal X‐ray detector exhibits an excellent sensitivity of 242 μC Gyair?1 cm?2 under the 10 V bias (0.31 V μm?1), a detection limit as low as 430 nGyair s?1, ultrastable response current, a stable baseline with the lowest dark current drift of 6.06×10?9 nA cm?1 s?1 V?1, and rapid response time of τrise=7.3 ms and τfall=22.5 ms. These crystals are promising candidates for the next generation of optoelectronic devices.  相似文献   

18.
Transition-metal containing halides with Ruddlesden-Popper (RP) perovskite structures have received extensive attention owing to their emerging and anisotropic photoelectric functionalities. Among them, A2CuX4 (A=alkali metal or organic cations, X=Cl, Br, I) series are particular, because of the Jahn-Teller distortion of Cu2+ sensitive to external stimuli such as temperature and pressure. In this article, we report the structure evolution and physical property responses of RP perovskites Rb2CuCl4-xBrx (x=1, 2) to external pressure. Dramatic structural phase transitions from orthorhombic to monoclinic occur around 3.0 GPa in both materials regardless of their distinct compositions. Structure analyses reveal the suppression and final vanishing of the Jahn-Teller distortion of Cu2+ cations under compression and crossing the phase transition, respectively. Rb2CuCl4-xBrx perovskites exhibit abrupt bandgap narrowing (from reddish-brown to black) along with the structural phase transition, and an overall bandgap narrowing of 75% up to ∼27 GPa but still keeping semiconductive. During the compression processes, the resistances of Rb2CuCl4-xBrx have been greatly reduced by 5-orders of magnitude. Moreover, all of the pressure-induced phenomena in Rb2CuCl4-xBrx perovskites are reversible upon decompression and no obvious difference is observed for the pressure responses between [CuCl4Br2] and [CuCl4(Cl,Br)2] coordination environments. The impact of pressure on the structural and physical properties in two-dimensional Rb2CuCl4-xBrx provides in-depth understanding on the structure design of functional halide perovskites at ambient conditions.  相似文献   

19.
Recently, with the prevalence of `perovskite fever', organic–inorganic hybrid perovskites (OHPs) have attracted intense attention due to their remarkable structural variability and highly tunable properties. In particular, the optical and electrical properties of organic–inorganic hybrid lead halides are typical of the OHP family. Besides, although three‐dimensional hybrid perovskites, such as [CH3NH3]PbX3 (X = Cl, Br or I), have been reported, the development of new organic–inorganic hybrid semiconductors is still an area in urgent need of exploration. Here, an organic–inorganic hybrid lead halide perovskite is reported, namely poly[(2‐azaniumylethyl)trimethylphosphanium [tetra‐μ‐bromido‐plumbate(II)]], {(C5H16NP)[PbBr4]}n, in which an organic cation is embedded in inorganic two‐dimensional (2D) mesh layers to produce a sandwich structure. This unique sandwich 2D hybrid perovskite material shows an indirect band gap of ~2.700 eV. The properties of this compound as a semiconductor are demonstrated by a series of optical characterizations and indicate potential applications for optical devices.  相似文献   

20.
Recently, low‐dimensional organic‐inorganic hybrid metal halide perovskites acting as single‐component white‐light emitting materials have attracted extensive attention, but most studies concentrate on hybrid lead perovskites. Herein, we present two isomorphic zero‐dimensional (0D) hybrid cadmium perovskites, (HMEDA)CdX4 (HMEDA=hexamethylenediamine, X=Cl ( 1 ), Br ( 2 )), which contain isolated [CdX4]2? anions separated by [HMEDA]2+ cations. Under UV light excitation, both compounds display broadband bluish white‐light emission (515 nm for 1 and 445 nm for 2 ) covering the entire visible light spectrum with sufficient photophysical stabilities. Remarkably, compound 2 shows a high color rendering index (CRI) of 83 enabling it as a promising candidate for single‐component WLED applications. Based on the temperature‐dependent, powder‐dependent and time‐resolved PL measurements as well as other detailed studies, the broadband light emissions are attributed to self‐trapped excitons stemming from the strong electron‐phonon coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号