首页 | 本学科首页   官方微博 | 高级检索  
     检索      


First-Principles Study of Aziridinium Lead Iodide Perovskite for Photovoltaics
Authors:Dr Qiang Teng  Dr Tingting Shi  Dr Yu-Jun Zhao
Institution:1. Department of Physics, South China University of Technology, Guangzhou, Guangdong, 510640 China

Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510640 China;2. Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632 China;3. Department of Physics, South China University of Technology, Guangzhou, Guangdong, 510640 China

Abstract:The long-term stability remains one of the main challenges for the commercialization of the rapidly developing hybrid organic-inorganic perovskite solar cells. Herein, we investigate the electronic and optical properties of the recently reported hybrid halide perovskite (CH2)2NH2PbI3 (AZPbI3), which exhibits a much better stability than the popular halide perovskites CH3NH3PbI3 and HC(NH2)2PbI3, by using density functional theory (DFT). We find that AZPbI3 possesses a band gap of 1.31 eV, ideal for single-junction solar cells, and its optical absorption is comparable with those of the popular CH3NH3PbI3 and HC(NH2)2PbI3 materials in the whole visible-light region. In addition, the conductivity of AZPbI3 can be tuned from efficient p-type to n-type, depending on the growth conditions. Besides, the charge-carrier mobilities and lifetimes are unlikely hampered by deep transition energy levels, which have higher formation energies in AZPbI3 according to our calculations. Overall, we suggest that the perovskite AZPbI3 is an excellent candidate as a stable high-performance photovoltaic absorber material.
Keywords:density functional calculation  electronic property  lead halide perovskite  photovoltaic  solar cell
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号