首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A versatile method was introduced to prepare cyclic polymers from both conjugated and unconjugated vinyl monomers. It was developed on the combination of the RAFT polymerization and the self‐accelerating double strain‐promoted azide‐alkyne click (DSPAAC) reaction. In this approach, a switchable chain transfer agent 1 was designed to have hydroxyl terminals and a functional pyridinyl group. The protonation and deprotonation of pyridinyl group endowed the chain transfer agent 1 with a switchable control capability to RAFT polymerization of both conjugated and unconjugated vinyl monomers. Based on this, RAFT polymerization and the following hydroxyl end group modification were used to prepare various azide‐terminated linear polymers including polystyrene, poly(N‐vinylcarbazole), and polystyrene‐block‐poly(N‐vinylcarbazole). Using sym‐dibenzo‐1,5‐cyclooctadiene‐3,7‐diyne (DBA) as small linkers, the corresponding cyclic polymers were then prepared via the DSPAAC reaction between DBA and azide terminals of the linear precursors. Due to the self‐accelerating property of DSPAAC reaction, this bimolecular ring‐closing reaction could efficiently produce the pure cyclic polymers using excess molar amounts of DBA to linear polymer precursors. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1811–1820  相似文献   

2.
The first synthesis of the fully conjugated ethynylene‐linked polymer incorporating boron dipyrrine complex (BODIPY) and zinc porphyrin in the main chain was performed based on the exclusive Sonogashira polycondensation. Comprehensive experimental and theoretical investigations lead to an elaborate synthetic route to circumvent the possible side reactions of BODIPY in the presence of the palladium catalyst. Additionally, optimization of the synthetic conditions found that dichloromethane as the solvent suppresses the formation of the pseudo‐trans dimer of the copper acetylide and mitigates the undesired oxidative homocoupling reaction. Eventually, the exclusive Sonogashira polycondensation in dichloromethane provided the alternating BODIPY–porphyrin ethynylene‐conjugated polymer, which displayed absorption up to the near‐infrared wavelengths. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2457–2465  相似文献   

3.
Azobenzene switches its structure instantaneously by reversible trans‐to‐cis and cis‐to‐trans photoisomerization with light irradiations. Dynamic change in polymer structure is expected via introducing an azobenzene unit into the main chain. In this study, a set of methyl‐substituted azobenzene–carbazole conjugated copolymers is synthesized by the Suzuki–Miyaura coupling method. Introduction of methyl substituents to the azobenzene unit of the monomer, and polymerization in a high‐boiling solvent improve the molecular weight of the polymer. Decrease of effective conjugation length due to the twisted structure of the main chain allows progress of photoisomerization. The microstructure of the polymer was determined with grazing incidence X‐ray diffraction (GIXD) measurements using synchrotron radiation. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1756–1764  相似文献   

4.
We report a facile synthesis of the well‐known and highly promising conjugated polymer TQ1 using eco‐friendly direct heteroarylation reaction. Optimization of the reaction conditions yielded the target polymer with good optoelectronic and charge‐transport characteristics. The TQ1 polymer obtained in the direct heteroarylation reaction delivered power conversion efficiency of ~5% in organic bulk heterojunction solar cells, which matches well the characteristics of the reference devices assembled using TQ1 batch synthesized via conventional Stille polycondensation reaction. The obtained results highlight the potential of the direct heteroarylation reaction as an efficient and environment‐friendly alternative to Stille cross‐coupling in the design of high‐quality semiconductor materials for organic electronics. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 776–782  相似文献   

5.
Vinyl‐conjugated monomer (methyl acrylate, MA) and allyl 2‐bromopropanoate (ABP)‐possessing unconjugated C?C and active C? Br bonds were polymerized via the Cu(0)‐mediated simultaneous chain‐ and step‐growth radical polymerization at ambient temperature using Cu(0) as catalyst, N,N,N′,N″,N″‐pentamethyldiethylenetriamine as ligand and dimethyl sulfoxide as solvent. The conversion was reached higher than 98% within 20 h. The obtained polymers showed block structure consisting of polyester and vinyl polymer moieties. The Cu(0)‐catalyzed simultaneous chain‐ and step‐growth radical polymerization mechanism was demonstrated by NMR, matrix‐assisted laser desorption ionization time‐of‐flight, and GPC analyses. Furthermore, the obtained copolymers of MA and ABP were further modified with poly(N‐isopropylamide) through radical thiol‐ene “click” chemistry from the terminal double bond. The thermoresponsive behavior of this block copolymer was investigated. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3907–3916  相似文献   

6.
The synthesis and unique optoelectronic features of a π‐conjugated polymer containing both thiophene and 1‐phenylphosphole sulfide units (multiple heteroles) in the main chain by the post‐element transformation of a regioregular organometallic polymer possessing titanacyclopentadiene‐2,5‐diyl unit are described. The π‐conjugated polymer containing multiple heteroles was obtained in 73% yield by the simultaneous reaction of the organotitanium polymer with sulfur monochloride and dichlorophenylphosphine (0.6 equiv each), whose number‐average molecular weight (Mn) and the molecular‐weight distribution (Mw/Mn) were estimated to be 11,000 and 3.4, respectively, by the size exclusion chromatography (SEC). The π‐conjugated polymer thus obtained was found to have the high HOMO and the low LUMO energy levels due to the electron‐rich thiophene and electron‐deficient phosphole sulfide units, respectively, as supported by its cyclic voltammetry (CV) analysis. Compared to a mixture of a polymer containing sole thiophene‐unit and that containing sole phosphole sulfide units, the π‐conjugated polymer‐containing multiple heteroles proved to exhibit interesting optical properties. For example, a specific emission peak was observed at 608 nm in the photoluminescence spectrum, which was not observed in the case of the thiophene‐containing polymer, the phosphole‐containing polymer, and their mixture. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2519–2525  相似文献   

7.
The photophysical and ion‐sensing properties of densely grafted conjugated polymer poly‐p‐phenylenevinylene‐g‐poly(2‐(methacryloyloxy)ethyl)trimethylammonium chloride (PPV‐g‐PMETAC) are presented herein. The grafted polymer exhibits excellent iodide‐sensing which is easily observed using fluorescence spectroscopy. The iodide detection limit for PPV‐g‐PMETAC was found to be 10 nM and was independent of temperature and pH <12. The change in fluorescence of PPV‐g‐PMETAC, upon exposure to iodide, was attributed to polymer aggregation due to changes in the morphology of the grafted PMETAC side chains, which was observed using atomic force microscopic and dynamic light scattering studies. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1997–2003  相似文献   

8.
Phase separation processes following high‐rate extension in unentangled polymer solutions are studied theoretically. The flow‐induced demixing is associated with the coil–stretch transition predicted in high‐molecular‐weight polymer solutions at high‐enough Weissenberg numbers. The developed mean‐field theory is valid in the dilute/semidilute solution regime, where the stretched coils overlap strongly. We elucidate and discuss the main kinetic stages of the polymer/solvent separation process including (i) growth of concentration fluctuations and formation of oriented protofibrils by anisotropic spinodal decomposition; (ii) development of well‐defined highly oriented and stiff fibrils forming an anisotropic network (cross‐linked fiber); (iii) microphase separation and lateral collapse of the network yielding dense oriented fiber. These novel predictions are in qualitative agreement with the experimental data. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 623–637  相似文献   

9.
Previous approaches used to decorate latently reactive conjugated polymer‐coated carbon nanotube complexes have utilized “grafting‐to” strategies. Here, we coat the carbon nanotube surface with a conjugated polymer whose side chains contain the radical initiator, α‐bromoisobutyrate, which enables atom transfer radical polymerization (ATRP) from the polymer–nanotube surface. Using light to generate Cu(I) in situ, ATRP is used to grow narrow dispersity polymer chains from the polymer–nanotube surface. We confirm the successful polymerization of (meth)acrylates from the polymer–nanotube surface using a combination of gel permeation chromatography and infrared spectroscopy. Strikingly, we demonstrate that nanotube optoelectronic properties are preserved after radical‐mediated polymer grafting using Raman spectroscopy and photoluminescence mapping. Overall, this work elucidates a method to grow narrow dispersity polymer chains from the polymer–nanotube surface using light‐driven radical chemistry, with concurrent preservation of nanotube optoelectronic properties. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2015–2020  相似文献   

10.
Polymer‐solvent compound formation, occurring via co‐crystallization of polymer chains and selected small‐molecular species, is demonstrated for the conjugated polymer poly(9,9‐dioctylfluorene) (PFO) and a range of organic solvents. The resulting crystallization and gelation processes in PFO solutions are studied by differential scanning calorimetry, with X‐ray diffraction providing additional information on the resulting microstructure. It is shown that PFO‐solvent compounds comprise an ultra‐regular molecular‐level arrangement of the semiconducting polymer host and small‐molecular solvent guest. Crystals form following adoption of the planar‐zigzag β‐phase chain conformation, which, due to its geometry, creates periodic cavities that accommodate the ordered inclusion of solvent molecules of matching volume. The findings are formalized in terms of nonequilibrium temperature–composition phase diagrams. The potential applications of these compounds and the new functionalities that they might enable are also discussed. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1481–1491  相似文献   

11.
When PEG (M.W.~5000 Daltons) is conjugated to poly(l ‐alanine), the polymer aqueous solutions (<10.0 wt.%) undergo sol‐to‐gel (thermal gelation), whereas it is conjugated to poly(l ‐lactic acid), the polymer aqueous solutions (>30.0 wt.%) undergo gel‐to‐sol (gel melting) as the temperature increases. In the search for molecular origins of such a quite different phase behavior, poly(ethylene glycol)‐poly(l ‐alanine) (PEG‐PA; EG113‐A12) and poly(ethylene glycol)‐poly(l ‐lactic acid) (PEG‐PLA; EG113‐LA12) are synthesized and their aqueous solution behavior is investigated. PEG‐PAs with an α‐helical core assemble into micelles with a broad size distribution, and the dehydration of PEG drives the aggregation of the micelles, leading to thermal gelation, whereas increased molecular motion of the PLA core overwhelms the partial dehydration of PEG, thus gel melting of the PEG‐PLA aqueous solutions occurs. The core‐rigidity of micelles must be one of the key factors in determining whether a polymer aqueous solution undergoes sol‐to‐gel or gel‐to‐sol transition, as the temperature increases. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, , 52, 2434–2441  相似文献   

12.
Previous studies on hydrogels crosslinked by acrylated PEO99–PPO65–PEO99 triblock copolymer (F127DA) micelles demonstrate outstanding strength and toughness, which is attributed to the efficient energy dissipation through the hydrophobic association in the micelles. The current study further focuses on how the solvent property affects the structures and the mechanical properties of F127DA micelle crosslinked polyacrylamide gels. Binary solvents comprised of dimethyl sulfoxide (DMSO) and water are used to adjust the polymer/solvent interactions, which consequently tune the conformations of the polymer chains in the network. The presence of DMSO significantly decreases the strength but increased the stretchability of the gels, whereas the overall tensile toughness remained unchanged. In situ small‐angle X‐ray scattering measurements reveal the deformation of micelles along with the stretching direction. A structure evolution mechanism upon solvent change is proposed, according to the experimental observations, to explain influence of solvent quality on the mechanical properties of the micelle‐crosslinked gels. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 473–483  相似文献   

13.
In single‐molecule force spectroscopy (SMFS), many studies have focused on the elasticity and conformation of polymer chains, but little attention has been devoted to the dynamic properties of single polymer chains. In this study, we measured the energy dissipation and elastic properties of single polystyrene (PS) chains in toluene, methanol, and N,N‐dimethylformamide using a homemade piezo‐control and data acquisition system externally coupled to a commercial atomic force microscope (AFM), which provided more accurate information regarding the dynamic properties of the PS chains. We quantitatively measured the chain length‐dependent changes in the stiffness and viscosity of a single chain using a phenomenological model consistent with the theory of viscoelasticity for polymer chains in dilute solution. The effective viscosity of a polymer chain can be determined using the Kirkwood model, which is independent of the intrinsic viscosity of the solvent and dependent on the interaction between the polymer and solvent. The results indicated that the viscosity of a single PS chain is dominated by the interaction between the polymer and solvent. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1736–1743  相似文献   

14.
Poly[9,9′‐dihexylfluorene‐2,7‐diyl)‐6,6″‐(2,2′:6′,2″‐terpyridine)] (LaPPS75) and its complexes with neodymium were synthesized and characterized. Magnetic measurements showed that the noncomplexed polymer presented a ferromagnetic contribution due to the formation of π stacking, and that in absence of those, the ferromagnetic behavior is suppressed. The pristine polymer, the complexed one and a low‐molecular‐weight model compound with the same structure of the complexed site in the parent polymer were studied. The observed behavior found is presented and discussed, the most important finding was that when a conjugated chain is used as a host for the metallic ion, an amplification of four times for the magnetization is achieved, using the same metallic content for complexed polymer and model compound for comparison. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 304–311  相似文献   

15.
The microstructure of conjugated polymers film is strongly dependent on factors such as the conformation and the film formation processing. In this article, we show how to induce more planarization conformation of conjugated polymer backbone during film formation processing and finally leading to the fibrils formation of the cast film. The conjugated polymer we used is poly[[2,5‐bis(2‐octyldodecyl)‐2,3,5,6‐tetrahydro‐3,6‐dioxopyrrolo[3,4‐c]pyrrole‐1,4‐diyl]‐alt–[[2,2′‐(2,5‐thiophene)bis‐thieno[3,2‐b]thiophen]‐5,5′‐diyl]] (PDPPTT‐T). The main solvent is chloroform (CF), the aliphatic 1,8‐diiodooctane (DIO) is used as the additives, which has similar solubility parameter to the conjugated polymer side chain, is a bad solvent to the conjugated backbone and has a lower volatility than CF. Thus, during the film formation, chloroform was evaporated faster than the additive. After the chloroform evaporated completely, the side chain was still dissolved in the additive, which decreases the steric hindrance and improves planarization conformation of the conjugated backbone of PDPPTT‐T. Films processed using the aliphatic additives have fibrillar morphology while films cast from the CF solvent were featureless. TEM images reveal that the fibrils were about 30 nm in width and several hundred nanometers in length. The backbones of PDPPTT‐T were parallel to the long axis of fibrils. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1079–1086  相似文献   

16.
It remains challenging to satisfy the combined performances for hydrogels with excellent mechanical behavior, high deformability, and super recoverability under harsh environmental conditions. In this study, we first established a strong polymer network via the crosslinking of polymer chains on the surfaces of sub‐5‐nm calcium hydroxide nanospherulites in ethylene glycol solvent. The organic gel expressed excellent mechanical properties such as a recoverable compressive engineering stress of 249 MPa and an elongation stress of 402 KPa, which was attributed to the uniform nanosized crosslinking structure as characterized by SEM. Moreover, the nonvolatile solvent remained in the gel, meaning that the sample can resist a wide temperature range of ?56 to 100 °C without losing the elastic properties. This novel organic gel could provide promising routes to develop the ideal elastic carriers for wearable devices, smart skin sensors, and damping materials. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 713–721  相似文献   

17.
Poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) (PVDF‐CTFE) membranes were prepared by solvent casting from dimethylformamide (DMF). The preparation conditions involved a systematic variation of polymer/solvent ratio and solvent evaporation temperature. The microstructural variations of the PVDF‐CTFE membranes depend on the different regions of the PVDF‐CTFE/DMF phase diagram, explained by the Flory‐Huggins theory. The effect of the polymer/solvent ratio and solvent evaporation temperature on the morphology, degree of porosity, β phase content, degree of crystallinity, mechanical, dielectric, and piezoelectric properties of the PVDF‐CTFE polymer were evaluated. In this binary system, the porous microstructure is attributed to a spinodal decomposition of the liquid‐liquid phase separation. For a given polymer/solvent ratio, 20 wt % , and higher evaporation solvent temperature, the β phase content is around 82% and the piezoelectric coefficient, d33, is ? 4 pC/N © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 761–773  相似文献   

18.
This work describes the melting and polymorphic behavior of poly(decamethylene terephthalamide) (PA 10T). Both solution‐crystallized (SC) and melt‐crystallized (MC) PA 10T show double melting endotherms in DSC. The SC crystal form melts at 260–300°C giving the first melting endotherm, and meanwhile undergoes a polymorphic transition forming the MC crystal form. The subsequent melting of the MC crystal form gives the second melting endotherm at 300–325°C. This irreversible polymorphic transition is confirmed by variable‐temperature WAXD and IR. Dynamic mechanical thermal analysis (DMTA) shows a glass transition temperature (Tg) at 127°C and the presence of an α′ transition at 203°C (0.1 and 1 Hz). This transition could be confirmed by DSC and variable‐temperature WAXD experiments. The α′ transition correlates with a reversible thermal process and a sudden change in intersheet spacing. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 465–472  相似文献   

19.
A polycarbosilane having lactose‐derived structures was synthesized, and its thermal property, cytotoxicity, chemical crosslinking, and protein adsorption properties were investigated. The polycarbosilane (PSB‐Lac) was prepared by a thiol‐ene reaction between precursor poly(1‐(3‐butenyl)‐1‐methylsilacyclubane) (PSB) and heptaacetyl lactose that carried a thiol group at the anomeric position, and the successive deprotection of the acetyl groups. The lactose introduction efficiency determined by 1H NMR measurement was 75%. TGA and DSC revealed that the polymer had a 5 wt% decomposition temperature of 260 °C and glass transition temperature (Tg) of 84 °C, which indicated that PSB‐Lac was a thermally stable polymer. PSB‐Lac had no significant cytotoxicity, which was evaluated by human liver cancer cell line HepG2 cultivation on the polystyrene dishes coated with the polymer. Urethane‐crosslinked PSB‐Lac films were prepared by casting solutions of PSB‐Lac and hexamethylene diisocyanate and heating at 120 °C after evaporation of the solvent. The crosslinked PSB‐Lac showed higher adsorption of bovine serum albumin than the similarly crosslinked polycarbosilane that had a glucose structure (PSB‐Glc). © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2420–2425  相似文献   

20.
Understanding the multiple phase transitions such as collapse transition, phase separation, and crystallization in solutions is of fundamental importance to control the solution structure of conjugated polymers in device processing. Combining in situ synchrotron radiation small and wide‐angle X‐ray scattering, ultrasensitive differential scanning calorimetry, ultraviolet–visible absorption spectroscopy, and polarized optical microscopy, we investigate the order–disorder transitions in poly(3‐hexylthiophene)/toluene solutions during cooling and heating processes. We demonstrate the occurrence of collapse transition of polymer chains from a random coil state to a lower dimensional network prior to the onset of crystallization during cooling in solution. This conformational preordering can lead to the formation of a lyotropic liquid crystalline phase, which is of great significance to the crystallization and ordering in polymer films, and further to promote its electric performance. It is examined that the mobility of films cast from chain‐collapsed solutions can be one order of magnitude higher than that from isotropic solutions with random‐coiled conformations. Thus, the conformational preordering in solutions is proposed to be a more efficient way than the postannealing of films to improve the electric performance of conjugated polymer films. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1105–1114  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号