首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 317 毫秒
1.
A novel polythiophene bearing a pendant terpyridine moiety has been synthesized by electrochemical polymerization of a new thiophene monomer, namely 4′‐(2,2′:5′,2″‐terthien‐3′‐ethynyl)‐2,2′:6′,2″‐terpyridine (TAT). The insertion of a conjugated ethynyl spacer between the terthiophene and the terpyridine fragments provides for an effective extension of the delocalization of electrons within the structural unit and the polymer as a whole. The synthesis and characterization of the relevant monomer, the electrosynthesis of the corresponding polymer and its electrochemical, UV–visible spectroelectrochemical and IR characterization are described. Finally, a comparison between the electrochemical, spectroscopic, and spectroelectrochemical properties of PTAT and the analogue, saturated‐spacer PTTT (TTT = 4′‐[(2,2′:5′,2″‐terthien‐3′‐yl)methoxy]‐2,2′:6′,2″‐terpyridine) polymer is discussed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Three series of aromatic polyimides with 4‐(carbazol‐9‐yl)triphenylamine moieties were prepared from the polycondensation reactions of 4,4′‐diamino‐4″‐(carbazol‐9‐yl) triphenylamine (1), 4,4′‐diamino‐4″‐(3,6‐di‐tert‐butylcarbazol‐9‐yl)triphenylamine (t‐Bu‐1), and 4,4′‐diamino‐4″‐(3,6‐dimethoxycarbazol‐9‐yl)triphenylamine (MeO‐1), respectively, with various commercially available tetracarboxylic dianhydrides. In addition to high thermal stability and good film‐forming ability, the resulting polyimides exhibited an ambipolar electrochromic behavior. The polyimides based on t‐Bu‐1 and MeO‐1 revealed higher redox‐stability and enhanced electrochromic performance than the corresponding ones based on 1 because the active sites of their carbazole units are blocked with bulky t‐butyl or electron‐donating methoxy groups. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1172–1184  相似文献   

3.
The Grignard metathesis reaction of 2,5‐dibromo‐3‐(5′‐hexylpyridine‐2′‐yl)thiophene ( M1 ) with i‐PrMgCl afforded 5‐bromo‐2‐chloromagnesio‐3‐(5′‐hexylpyridine‐2′‐yl)thiophene ( GM1 ) in the 86% selectivity. The Kumada coupling polymerization by Ni(dppp)Cl2 gave poly M1 having the roughly controlled molecular weight between 6700 and 23,400. The characterization using the gel permeation chromatographic and matrix‐assisted laser desorption/ionization‐time of flight mass spectra indicated the diffusion of the nickel catalyst from the propagating end. Based on the GC and 1H NMR spectra, the head‐to‐tail content of poly M1 was calculated to be 89%. The regioselective Grignard metathesis reactions of 5,5′‐dibromo‐4‐(5″‐hexylpyridine‐2″‐yl)‐2,2′‐bithiophene ( M2 ) and 5,5′‐dibromo‐4‐(5″‐hexylpyrimidine‐2″‐yl)‐2,2′‐bithiophene ( M3 ) also occurred at the ortho‐position of the nitrogen heterocycle. The Kumada coupling polymerizations gave poly M2 and poly M3 having the head‐to‐tail content of 75% and 85%, respectively. The UV–vis spectra of polymers suggested that the polymer conformation becomes more planar in the order of poly M1 < poly M3 < poly M2 , which was investigated by the theoretical calculation of the model oligomers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2166–2174  相似文献   

4.
Two series of polyimides I – II with methyl‐substituted triphenylamine units were prepared from the diamines, 4,4′‐diamino‐2″,4″,6″‐trimethyltriphenylamine (Me3TPA‐diamine; 1 ) and 4,4′‐diamino‐4″‐methyltriphenylamine (MeTPA‐diamine; 2 ), and two commercially available tetracarboxylic dianhydrides via a conventional two‐step chemical imidization. All the polymers were readily soluble in many polar solvents and showed useful levels of thermal stability associated with high glass transition temperatures (266–340 °C) and high char yields (higher than 49% at 800 °C in nitrogen). The polymer films showed reversible electrochemistry/electrochromism accompanied by a color change from neutral pale yellow to green oxidized form with good coloration efficiency, switching time, and stability. The CO2 permeability coefficients (PCO2) and permeability selectivity (PCO2/PCH4) for these polyimide membranes were in the range of 34.1–229.2 barrer and 21.3–28.9, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
Fluorene‐based polymers are widely known materials due to a combination of features such as photoluminescence and electroluminescence, oxidative stability, and film‐forming ability. However, studies reporting nonlinear optical properties in this class of conjugated polymer are scarce. Here, we report a new class of polyfluorene derivatives poly(9,9′‐n‐dihexyl‐2,7‐fluorenedilvinylene‐alt‐1,4‐phenylenevinylene), poly(9,9′‐n‐dihexyl‐2,7‐fluorenedilvinylene‐alt‐2,5‐thiophene), and poly[(9,9‐di‐hexylfluorenediylvinylene‐alt‐1,4‐phenylenevinylene)‐co‐((9,9′‐(3‐t‐butylpropanoate) fluorene‐1,4‐phenylene)] displaying high two‐photon absorption (2PA) in the spectral range from a 490 to 1100 nm. The 2PA cross‐section peak values for these materials are as high as 3000 Göppert Mayer (1 GM = 1 × 10?50 cm4 s/photon), which is related to the high degree of conjugation along the polymer backbone. The polymers that were used in this study presented a strong two‐photon luminescence and also displayed optical limiting behavior, which, in combination with their well‐established properties, make them highly suitable for nonlinear optical devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 148–153, 2012  相似文献   

6.
7.
Starting from the pyrylium salt and following a facile synthetic route, we synthesized and polymerized 4,4″‐diiodo‐2′,6′‐di[4‐(2′‐ethylhexyl)oxy]phenyl‐p‐terphenyl with p‐divinylbenzene or p‐diethynylbenzene. The resulting polymers had moderate molecular weights, were amorphous, and dissolved in tetrahydrofuran and chloroform, with glass‐transition temperatures of 120–131 °C. The polymers behaved as violet‐blue‐emitting materials with photoluminescence maxima around 420 and 450 nm in solution and in thin films, respectively. They possessed well‐defined chromophores resulting from steric interactions in the polymer chain. The photoluminescence quantum yields were up to 0.29. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2591–2600, 2002  相似文献   

8.
Two series of new organosoluble polyamides with methyl‐substituted triphenylamine (MeTPA) units showing anodically electrochromic characteristic were prepared from the phosphorylation polyamidation reaction of two diamine monomers, 4,4′‐diamino‐2″,4″,6″‐trimethyltriphenylamine (Me3TPA‐diamine; 2 ) and 4,4′‐diamino‐4″‐methyltriphenylamine (MeTPA‐diamine; 2 ′), with various dicarboxylic acids, respectively. These polymers were readily soluble in many polar solvents and showed useful levels of thermal stability associated with relatively high glass‐transition temperatures (Tg) (314–329 °C) and high char yields (higher than 62% at 800 °C in nitrogen). In addition, the polymer films showed reversible electrochemical oxidation, high coloration efficiency (CE), low switching time, and anodic green electrochromic behavior. The unexpected electrochemical behavior of higher oxidation potential and lower electrochemical stability of Me3TPA‐polyamides I than MeTPA corresponding polymers could be attributed to the higher steric hindrance of ortho‐substituents in Me3TPA moieties, thus made the resonance stabilization of cation radical much more difficult for the Me3‐substituted phenyl ring. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
We report here the synthesis via Suzuki polymerization of two novel alternating polymers containing 9,9‐dioctylfluorene and electron‐withdrawing 4,4′‐dihexyl‐2,2′‐bithiazole moieties, poly[(4,4′‐dihexyl‐2,2′‐bithiazole‐5,5′‐diyl)‐alt‐(9,9‐dioctylfluorene‐2,7‐diyl)] (PHBTzF) and poly[(5,5′‐bis(2″‐thienyl)‐4,4′‐dihexyl‐2,2′‐bithiazole‐5″,5″‐diyl)‐alt‐(9,9‐dioctylfluorene‐2,7‐diyl)] (PTHBTzTF), and their application to electronic devices. The ultraviolet–visible absorption maxima of films of PHBTzF and PTHBTzTF were 413 and 471 nm, respectively, and the photoluminescence maxima were 513 and 590 nm, respectively. Cyclic voltammetry experiment showed an improvement in the n‐doping stability of the polymers and a reduction of their lowest unoccupied molecular orbital energy levels as a result of bithiazole in the polymers' main chain. The highest occupied molecular orbital energy levels of the polymers were ?5.85 eV for PHBTzF and ?5.53 eV for PTHBTzTF. Conventional polymeric light‐emitting‐diode devices were fabricated in the ITO/PEDOT:PSS/polymer/Ca/Al configuration [where ITO is indium tin oxide and PEDOT:PSS is poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonic acid)] with the two polymers as emitting layers. The PHBTzF device exhibited a maximum luminance of 210 cd/m2 and a turn‐on voltage of 9.4 V, whereas the PTHBTzTF device exhibited a maximum luminance of 1840 cd/m2 and a turn‐on voltage of 5.4 V. In addition, a preliminary organic solar‐cell device with the ITO/PEDOT:PSS/(PTHBTzTF + C60)/Ca/Al configuration (where C60 is fullerene) was also fabricated. Under 100 mW/cm2 of air mass 1.5 white‐light illumination, the device produced an open‐circuit voltage of 0.76 V and a short‐circuit current of 1.70 mA/cm2. The fill factor of the device was 0.40, and the power conversion efficiency was 0.52%. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1845–1857, 2005  相似文献   

10.
(±)‐exo,endo‐5,6‐Bis{[[11′‐[2″,5″‐bis[2‐(3′‐fluoro‐4′‐n‐alkoxyphenyl)ethynyl]phenyl]undecyl]oxy]carbonyl}bicyclo[2.2.1]hept‐2‐ene (n = 1–12) monomers were polymerized by ring‐opening metathesis polymerization in tetrahydrofuran at room temperature with Mo(CHCMe2Ph)(N‐2,6‐iPr2Ph)(OtBu)2 as the initiator to produce polymers with number‐average degrees of polymerization of 8–37 and relatively narrow polydispersities (polydispersity index = 1.08–1.31). The thermotropic behavior of these materials was independent of the molecular weight and therefore representative of that of a polymer at approximately 15 repeat units. The polymers exhibited an enantiotropic nematic mesophase when n was 2 or greater. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4076–4087, 2006  相似文献   

11.
Two new poly(phenylene vinylene)s containing m‐terphenyl or 2,6‐diphenylpyridine kinked units along the main chain were synthesized and were used as luminescent and laser materials. They were prepared from Heck coupling of 2,5‐didodecyloxy‐1,4‐divinylbenzene with 4,4″‐dibromo‐3′‐phenyl‐m‐terphenyl or 2,6‐di(4‐bromophenyl)‐4‐phenylpyridine. The kinked units along the main chain caused a partial interruption of the conjugation leading to emission at a shorter wavelength as compared with poly(p‐phenylene vinylene). The polymers presented blue‐green emission in solution and green‐yellow emission in the solid state with photoluminescence maxima at 465–497 and 546–550 nm, respectively. Polymer containing 2,6‐diphenylpyridine segments emitted at a longer wavelength than that containing m‐terphenyl and displayed higher quantum yields in solution (0.61 and 0.40, respectively). The influence of the solvent and polymer concentration on the photoluminescence characteristics was investigated. The photoluminescence properties of protonated polymer containing 2,6‐diphenylpyridine segments were investigated both in solution and in film. Amplified spontaneous emission and tunable laser action were also obtained from the two polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2214–2224, 2004  相似文献   

12.
Polymer nanocomposites consisting of multiwall carbon nanotube (MWCNT) and poly(ethylene 2,6‐naphthalate) (PEN) were prepared by a melt blending process in a twin‐screw extruder. The storage modulus (G′) and loss modulus (G″) of the PEN/MWCNT nanocomposites increased with increasing frequency, and this increment being more significant at low frequency. The terminal zone slope of G′ for the PEN/MWCNT nanocomposites decreased with increasing MWCNT content, and the nonterminal behavior of those was related to the dominant nanotube–nanotube interactions at higher MWCNT content, leading to the formation of the interconnected or network‐like structures of MWCNT in the polymer nanocomposites. The decrease in the slope of the plot of log G′ versus log G″ for the PEN/MWCNT nanocomposites with increasing MWCNT content suggested the changes in the microstructures of the polymer nanocomposites by incorporating MWCNT. The incorporation of very small quantity of MWCNT significantly improved the mechanical properties of the PEN/MWCNT nanocomposites. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1062–1071, 2006  相似文献   

13.
Some manufacturing processes of polymeric materials, such as injection molding or film blowing, cause the final product to be highly anisotropic. In this study, the mechanical behavior of drawn polyethylene (PE) tapes is investigated via micromechanical modeling. An elasto‐viscoplastic micromechanical model, developed within the framework of the so‐called composite inclusion model, is presented to capture the anisotropic behavior of oriented semicrystalline PE. Two different phases, namely amorphous and crystalline (both described by elasto‐viscoplastic constitutive models), are considered at the microstructural level. The initial oriented crystallographic structure of the drawn tapes is taken into account. It was previously shown by Sedighiamiri et al. (Comp. Mater. Sci. 2014, 82, 415) that by only considering the oriented crystallographic structure, it is not possible to capture the macroscopic anisotropic behavior of drawn tapes. The main contribution of this study is the development of an anisotropic model for the amorphous phase within the micromechanical framework. An Eindhoven glassy polymer (EGP)‐based model including different sources of anisotropy, namely anisotropic elasticity, internal stress in the elastic network and anisotropic viscoplasticity, is developed for the amorphous phase and incorporated into the micromechanical model. Comparisons against experimental results reveal remarkable improvements of the model predictions (compared to micromechanical model predictions including isotropic amorphous domains) and thus the significance of the amorphous phase anisotropy on the overall behavior of drawn PE tapes. © 2019 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 378–391  相似文献   

14.
Star‐shaped polystyrenes with acetyl glucose in the periphery and interior were synthesized via two‐steps, 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO)‐mediated living radical polymerizations. In the first step, styrene (St) was polymerized with 4‐[1′‐(2″,2″,6″,6″‐tetramethyl‐1″‐piperidinyloxy)ethyl]phenyl 2,3,4,6‐tetra‐O‐acetyl‐β‐D ‐glucopyranoside, 1 , at 120 °C to afford a TEMPO‐terminated polystyrene with acetyl glucose in the chain‐end, arm‐polymer 2 . Similarly, St was polymerized with 1‐phenyl‐1‐(2′,2′,6′,6′‐tetramethyl‐1′‐piperidinyloxy)ethane, 3 , to obtain a TEMPO‐terminated polystyrene, arm‐polymer 4 . In the second step, the coupling reaction of arm‐polymer 2 was performed using divinylbenzene (DVB) as a linking agent in m‐xylene at 138 °C, giving a star‐shaped polystyrene with acetyl glucose in the periphery, 5 . The coupling reaction of arm‐polymer 4 with DVB was carried out in the presence of 1 , which produced a star‐shaped polystyrene with acetyl glucose in the interior, 6 . Dynamic laser light scattering (DLS) measurements indicated that 5 and 6 existed as the particles in toluene with the average diameters ranging from 12–40 nm. The numbers of the arm (Narm) were 12–23 and 6–64 for 5 and 6 , respectively, which were determined by their isolated yields and static laser light scattering (SLS) measurements. The numbers of the acetyl glucose units (N1) were 12–23 and 9–104 for 5 and 6 , respectively, which were determined from specific rotation ([α]365). Finally, 5 and 6 were modified by deacetylation using sodium methoxide, producing star‐shaped polystyrenes with glucose in the periphery and interior, 7 and 8 , respectively. The final architectures were found to entrap a hydrophilic molecule at their glycoconjugated periphery or interior in good solvents for polystyrene such as chloroform. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4373–4381, 2005  相似文献   

15.
A helical step‐ladder polyarylene incorporating chiral (R)‐2,2′‐dioctoxy‐1,1′‐binaphthyl units was synthesized for the first time. The first step involved the preparation of a precursor poly(arylene ketone) via a palladium‐mediated Suzuki‐type cross‐coupling reaction with the aid of microwave heating. Two polymer‐analog reaction steps, the reduction of the keto groups to tertiary alcohol functionalities and subsequent intramolecular Friedel–Crafts cyclization, gave a step‐ladder polymer ( 6 ) in good yields with reasonable mean average molecular weights greater than 13,000. The regioselective cyclization pattern in the α position of the naphthalene core was confirmed by a comparison of the NMR data of the polymer with those of the corresponding model ladder oligomers, 12 and 13 , and also a single‐crystal structure of 13 . The optical spectra of the oligomers and polymers indicated that there was little electronic interaction across the binaphthyl units. The circular dichroism spectrum of 6 exhibited a strong bisignate Cotton effect in the π–π* absorption region of the planar chromophores, which reflected the strong exciton coupling within the helical polymer chain. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5533–5545, 2006  相似文献   

16.
A novel morpholinyl‐substituted, triphenylamine‐based diamine monomer, namely 4,4′‐diamino‐4″‐(4‐morpholinyl)triphenylamine, was synthesized and polymerized with various aromatic dicarboxylic acids via the phosphorylation polyamidation reaction leading to a series of electroactive aromatic polyamides (aramids). All aramids were readily soluble in polar organic solvents and could be solution cast into tough and flexible films with high thermal stability. Cyclic voltammograms of the aramid films on the indium‐tin oxide‐coated glass substrate exhibited a pair of reversible oxidation waves with very low onset potentials of 0.36 − 0.41 V (vs. Ag/AgCl) in acetonitrile solution. The polymer films showed reversible electrochemical oxidation accompanied by strong color changes with high coloration efficiency, high contrast ratio, and rapid switching time. The optical transmittance change (Δ%T) at 650 nm between the neutral state and the fully oxidized state is up to 90%. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1289–1298  相似文献   

17.
Antimicrobial polymers have been widely reported to exert strong biocidal effects against bacteria. In contrast with antimicrobial polymers with aliphatic ammonium groups, polymers with anilinium groups have been rarely studied and applied as biocidal materials. In this study, a representative polymer with aniline side functional groups, poly(N,N‐dimethylaminophenylene methacrylamide) (PDMAPMA), was explored as a novel antimicrobial polymer. PDMAPMA was synthesized and its physicochemical properties evaluated. The methyl iodide‐quaternized polymer was tested against the Gram‐positive Staphylococcus aureus, with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 16–32 and 64–128 μg mL?1, respectively. Against the Gram‐negative Escherichia coli, the MIC and MBC were both 64–128 μg mL?1. To broaden the range of applications, PDMAPMA was coated on substrates via crosslinking to endow the surface with contact‐kill functionality. The effect of charge density of the coatings on the antimicrobial behavior was then investigated, and stronger biocidal performance was observed for films with higher charge density. This study of the biocidal behavior of PDMAPMA both in solution and as coatings is expected to broaden the application of polymers containing aniline side groups and provide more information on the antimicrobial behavior of such materials. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1908–1921  相似文献   

18.
New sulfur‐containing aromatic diamines with methyl groups at the ortho position of amino groups have been developed to prepare highly refractive and transparent aromatic polyimides (PIs) in the visible region. All aromatic PIs derived from 4,4′‐thiobis[2″‐methyl‐4″‐(p‐phenylenesulfanyl)aniline ( 2 ), 4,4′‐thiobis[2,″6″‐dimethyl‐4″‐(p‐phenylenesulfanyl)aniline ( 5 ), and aromatic dianhydride, 4,4′‐[p‐thiobis(phenylenesulfanyl)]diphthalic anhydride ( 6 ) were prepared via a two‐step polycondensation. All PIs showed good thermal properties, such as 10% weight loss temperature in the range of 497–500 °C and glass transition temperatures above 196 °C. In addition, the PIs showed good optical properties, such as optical transparency above 75% at 450 nm with a 10‐μm film thickness, high refractive indices ranging from 1.7135 to 1.7301, and small in‐plane/out‐of‐plane birefringences between 0.0066 and 0.0076. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 656–662, 2010  相似文献   

19.
A microporous polymer is prepared by a catalyst‐free Diels–Alder reaction. A cyclopentadiene with both a diene and a dienophile functionality and a dienophilic maleimide are used for the Diels–Alder reaction. 1,3,5‐Tris(bromomethyl)‐2,4,6‐trimethylbenzene is reacted with sodium cyclopentadienide to produce the multicyclopentadiene‐functionalized monomer. A crosslinked polymer ( CDAP ) is obtained by the reaction of the cyclopentadiene monomer with N,N′‐1,4‐phenylenedimaleimide. The thermal dissociation of the cyclopentadiene dimeric unit and the subsequent Diels–Alder reaction with the maleimide group are investigated by the model reaction. We are able to restructure the crosslinked polymer network by taking advantage of the thermal reversibility of the Diels–Alder linkage. After the post thermal treatment, the BET surface area of the polymer ( CDAP‐T ) is greatly increased from 317 to 1038 m2 g?1. CDAP‐T is functionalized with pyrene by bromination with N‐bromosuccinimide and the subsequent substitution reaction with aminopyrene. The adsorption property of the pyrene‐functionalized polymer for an aromatic dye is investigated using malachite green. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3646–3653  相似文献   

20.
1,1‐Diphenylethylenene (DPE) was copolymerized anionically with styrene to yield well‐defined alternating copolymers, which were terminated by reacting the “living” polymeric carbanion species with 4′‐chloro‐2,2′:6′2″‐terpyridine. DPE containing polymers show improved long‐term service temperatures due to the stiffening of the polymer main chain by the bulky phenyl‐rings. In addition, the functionality provided by the terpyridine group allows the synthesis of attractive materials for various fields of application. The obtained polymers were fully characterized by means of nuclear magnetic resonance, gel permeations chromatography, elemental analysis, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, ultraviolet‐visible spectroscopy, and macromolecular hydrodynamic methods (analytical ultracentrifugation, gel permeation chromatography, intrinsic viscosimetry). In the molar mass range of 2 < M < 25 kg/mol, the scaling relationships between M and hydrodynamic characteristics are obtained. The values of the Kuhn segment length (or persistence length) and hydrodynamic diameters are evaluated and compared with those of linear polystyrene. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3691–3701, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号