首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A simple and efficient method to generate macrocyclic structures has been developed based on the dynamic behavior of the linker bis(2,2,6,6‐tetramethylpiperidin‐1‐yl)disulfide (BiTEMPS). The prime linear structure was transformed into a (macro)cycle using the following sequence: 1) thiol–ene reaction with a BiTEMPS derivative to afford the linear precursor, then 2) an entropy‐driven transformation induced by diluting and heating. The radicals generated from BiTEMPS upon heating are highly tolerant toward a variety of chemical species, including oxygen and olefins, but they exhibit high reactivity in exchange reactions, which can be applied to the topology transformation of various skeletons. The advantages of the present method, namely, its procedural simplicity and substrate versatility, are demonstrated by the gram‐scale synthesis of cyclic compounds with low and relatively high molecular weight.  相似文献   

2.
Covalent adaptable networks (CANs) possess unique properties as a result of their internal dynamic bonds, such as self-healing and reprocessing abilities. In this study, we report a thermally responsive C−Se dynamic covalent chemistry (DCC) that relies on the transalkylation exchange between selenonium salts and selenides, which undergo a fast transalkylation reaction in the absence of any catalyst. Additionally, we demonstrate the presence of a dissociative mechanism in the absence of selenide groups. After incorporation of this DCC into selenide-containing polymer materials, it was observed that the cross-linked networks display varying dynamic exchange rates when using different alkylation reagents, suggesting that the reprocessing capacity of selenide-containing materials can be regulated. Also, by incorporating selenonium salts into polymer materials, we observed that the materials exhibited good healing ability at elevated temperatures as well as excellent solvent resistance at ambient temperature. This novel dynamic covalent chemistry thus provides a straightforward method for the healing and reprocessing of selenide-containing materials.  相似文献   

3.
Thermoplastic elastomers composed of soft and hard segments are important elastic and processable synthetic polymers. The microphase‐separated soft domains show low glass transition temperature and possess sufficient chain mobility at room temperature. In this study, we report the synthesis and healing properties of multiblock copolymers containing disulfide bonds as dynamic covalent bonds. The multiblock copolymers composed of poly(arylether sulfone) and poly(alkylthioether) segments were synthesized by oxidative coupling polymerization of the corresponding thiol‐terminated oligomers. Atomic force microscopy phase images, differential scanning calorimetry, and dynamic mechanical analysis curves indicated the microphase‐separated morphology of the multiblock copolymer. Self‐healing properties of the polymer were evaluated by changes in the elongation at break of the cut/adhered samples. The elongation recovery increased with UV irradiation time, and the multiblock copolymer showed a 93% recovery after UV irradiation for 5 h. The healing efficiency induced by UV irradiation, determined by subtracting the recovery without UV irradiation, was calculated to be 51%. According to the UV spectra and solubility changes after UV irradiation, the main healing factor in this study was the crosslinking reactions caused by thiyl radicals generated from UV irradiation instead of disulfide exchange reactions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3545–3553  相似文献   

4.
Catalyst‐free recyclable polybutadiene (PB) elastomer cross‐linked by dynamic imine bonds is prepared by the reaction between amine functionalized PB and aldehyde cross‐linkers. The dynamic nature of imine bond is investigated by rheometry and creep‐recovery experiments. The cross‐linking degrees are regulated by incorporating different amount of aldehyde, and their influence on the cross‐linked elastomers is investigated in detail. The temperature‐induced imine exchange reactions enable recycling of the cross‐linked PB elastomers and their mechanical properties are almost unchanged after several cycles. It is important to note that the elastomers also show excellent solvent resistance even at high temperature. The good mechanical properties, solvent resistance and recycling ability of the resultant PB elastomer demonstrate the superiority of the imine bonds in the design of recyclable polymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2011–2018  相似文献   

5.
A facile cross‐linking strategy of using small molecules as physcial crosslinkers to facilitate recyclable polybutadiene (PB) elastomer with excellent toughness and stretchability is demonstrated. Carboxylic acid groups were incorporated along the PB backbone via thiol‐ene reaction, and then the polymer can be cross‐linked by ionic hydrogen bonds between the carboxylic acid groups from PB and the amine groups of the cross‐linkers. The ionic hydrogen bonds can dynamiclly break and reconstruct upon deformation, thus endowing the resultant polymer with not only high toughness and stretchability (~1800%), but also good self‐recovery and enhanced damping properties. Remarkably, the dynamically cross‐linked PB elastomer can be thermally recycled owing to the thermal reversibility of the ionic hydrogen bonds and the mechanical properties can be largely recovered after reprocessing. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1357‐1366  相似文献   

6.
Intrinsically exchangeable dynamic covalent bonds that can be triggered by readily usable stimuli offer easy incorporation of their dynamic properties in various molecular systems, but the library of such bonds is still being developed. Herein, we report the dynamic covalent chemistry of 2,2,6,6‐tetramethylpiperidine‐1‐sulfanyl (TEMPS) dimers derived from thermally reversible homolytic dissociation of disulfide linkages. High air stability of TEMPS was observed even at 100 °C, affording facile employment of thermal dissociation–association equilibria and adjustable bond exchange properties under atmospheric conditions. We also established an efficient synthetic route for a modifiable derivative of the dimer that enabled incorporation of dynamic properties into linear and network polymer structures. The obtained polymers showed controllable molecular weights, temperature‐dependent swelling properties, healing ability, and recyclability, reflecting the thermally tunable dynamics of the dimer.  相似文献   

7.
Solid‐state plasticity by dynamic covalent bond exchange in a shape‐memory polymer network bestows a permanent shape reconfiguration ability. Spatio‐selective control of thermally induced plasticity may further extend the capabilities of materials into unexplored domains. However, this is difficult to achieve because of the lack of spatio‐control in typical polymer network synthesis. Metal–ligand interactions possess the high strength of covalent bonds while maintaining the dynamic reversibility of supramolecular bonds. Metallosupramolecular shape‐memory polymer networks were designed and prepared, which demonstrated solid‐state plasticity. The metallo‐coordination bonds within these networks permit facile tuning of the plasticity behavior across a wide temperature range, simply by changing the metal ion. By controlling the diffusion of two different metal ions during preparation of a polymer film, a plasticity behavior with a spatial gradient was achieved, providing a unique shape‐morphing versatility with potential in shape‐memory devices.  相似文献   

8.
The dynamic mechanical properties of Nafion® 117 have been measured in‐plane parallel and perpendicular to the lamination direction in a specially designed humidity cell, which allows measurement of the stiffness and mechanic loss under fuel cell relevant temperature and humidity conditions (50–100% relative humidity, 30–120 °C). The results obtained at different temperature–humidity conditions are compared with the mechanical behavior of the dry as well as the membrane saturated with liquid water. Different regimes of change in mechanical properties were found, although in general water acts as a plasticizer in Nafion®. At elevated temperatures it stiffens the membrane by stabilizing the network of hydrophilic clusters. An intermediate increase of mechanical strength at very low humidity levels is attributed to an enforcement by formation of hydrates and hydrogen bridge bonds between vicinal sulfonic acid groups. This increase is significant for the protonated state of the membrane and disappears after ion exchange. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 786–795, 2005  相似文献   

9.
A further study on mechanical properties and morphology evolution of high density poly (ethylene)/ethylene‐vinyl acetate/and organically‐modified montmorillonite (HDPE/EVA/OMT) nanocomposites exposed to gamma‐rays (0–200 kGy) has been achieved. The results showed that nanocomposites have superior irradiation‐resistant properties to HDPE/EVA blend in mechanical properties. A transmission electron microscope study verified that a face‐face ordered nanostructure had been induced by gamma‐rays. The aim of this paper is to provide a possible mechanism on how the OMT influences the general properties of irradiated nanocomposites, based on the results of thermal, flammability and mechanical behavior. Three facts are postulated to be responsible for the mechanism. The first is the segregation of nano‐dispersed clay layers not only reduces polymer oxidation but prevents crosslinking reactions. The second is the nanostructure evolution induced by gamma‐rays, which may impart nanocomposites improved elasticity. The last is due to the Hofmann degradation, whose degraded products have opposite roles, accelerating polymer oxidation or promoting crosslinking reactions. These facts interact as well as compete with others. The properties of the nanocomposites strongly depended on the prevalent effects developing with increasing irradiation doses. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Nature has engineered delicate synergistic covalent and supramolecular polymers (CSPs) to achieve advanced life functions, such as the thin filaments that assist in muscle contraction. Constructing artificial synergistic CSP materials with bioinspired mechanically adaptive features, however, represents a challenging goal. Here, we report an artificial CSP system to illustrate the integration of a covalent polymer (CP) and a supramolecular polymer (SP) in a synergistic fashion, along with the emergence of notable mechanical and dynamic properties which are unattainable when the two polymers are formed individually. The synergistic effect relies on the peculiar network structures of the SP and CPs, which endow the resultant CSPs with overall improved mechanical performance in terms of the stiffness, strength, stretchability, toughness, and elastic recovery. Moreover, the dynamic properties of the SP, including self‐healing, stimuli‐responsiveness, and reprocessing, are also retained in the CSPs, thus leading to their application as programmable and tunable materials.  相似文献   

11.
郑宁  谢涛 《高分子学报》2017,(11):1715-1724
动态共价交联聚合物的研究具有悠久的历史,其早期的工作着眼于如何解决应力松弛带来的聚合物材料力学性能降低的问题.20世纪90年代以来,利用动态共价键来主动设计聚合物网络的特殊可适性逐渐成为研究主流,其中包括自修复和重加工性.然而,受到动态共价键的种类、通用性及所实现功能的特异性等限制,对于动态共价交联聚合物网络的研究尚停留在基础阶段.本文以本课题组近期在动态共价交联形状记忆聚合物的研究为基础,结合其他相关工作,展示了通用共价键(酯键及氨酯键)的动态可逆性,并利用其设计了具有特殊性能和潜在商业化价值的形状记忆聚合物.在此基础上,我们提出分子结构设计及宏观性能均不同于传统热塑性和热固性形状记忆聚合物的第3类形状记忆聚合物,即热适性形状记忆聚合物.  相似文献   

12.
A dual crosslinked self‐healing polyurethane was prepared with robust mechanical properties through the dynamic reversible pyridine‐Fe3+ coordination bonds and Diels–Alder (DA) covalent bonds dual crosslinking strategy. Moreover, the mechanical properties and self‐healing ability of polyurethane can be tuned readily by different ratio of the coordination bonds and DA bonds. Under external load, the coordination bonds serve as sacrificial bonds are broken to dissipate energy, the DA bonds can keep the shape of sample. With the coordination bonds participation, the damaged samples can be healed under moderate heating treatment or with the aid of FeCl3 solution. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2228–2234  相似文献   

13.
This Highlight presents an overview of the rapidly growing field of dynamic covalent polymers. This class of polymers combines intrinsic reversibility with the robustness of covalent bonds, thus enabling formation of mechanically stable, polymer‐based materials that are responsive to external stimuli. It will be discussed how the inherent dynamic nature of the dynamic covalent bonds on the molecular level can be translated to the macroscopic level of the polymer, giving access to a range of applications, such as stimuli‐responsive or self‐healing materials. A primary distinction will be made based on the type of dynamic covalent bond employed, while a secondary distinction will be based on the consideration whether the dynamic covalent bond is used in the main chain of the polymer or whether it is used to allow side chain modification of the polymer. Emphasis will be on the chemistry of the dynamic covalent bonds present in the polymer, in particular in relation to how the specific (dynamic) features of the bond impart functionality to the polymer material, and to the conditions under which this dynamic behavior is manifested. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3551–3577.  相似文献   

14.
Dynamic covalent bonds are extensively employed in dynamic combinatorial chemistry. The metathesis reaction of disulfide bonds is widely used, but requires catalysis or irradiation with ultraviolet (UV) light. It was found that diselenide bonds are dynamic covalent bonds and undergo dynamic exchange reactions under mild conditions for diselenide metathesis. This reaction is induced by irradiation with visible light and stops in the dark. The exchange is assumed to proceed through a radical mechanism, and experiments with 2,2,6,6‐tetramethylpiperidin‐1‐yloxyl (TEMPO) support this assumption. Furthermore, the reaction can be conducted in different solvents, including protic solvents. Diselenide metathesis can also be used to synthesize diselenide‐containing asymmetric block copolymers. This work thus entails the use of diselenide bonds as dynamic covalent bonds, the development of a dynamic exchange reaction under mild conditions, and an extension of selenium‐related dynamic chemistry.  相似文献   

15.
16.
Combining stretchability and self‐healing properties in a man‐made material is a challenging task. For an efficient self‐healing material, weaker dynamic or reversible bonds should be presented as crosslinks so that they will first break upon damage and then reform after healing, which is not favorable when developing elastic materials. In this work, by incorporating dynamic Fe(III)‐triazole coordination bonds into polydimethylsiloxane (PDMS) backbone, a highly elastic polymer is obtained that can be thermally healed at mild temperature. The as‐prepared polymer can be stretched to 3400% strain at low loading speed (1 mm min–1). When damaged, the polymer can be thermally healed at 60 °C for 20 h with a healing efficiency of over 90%. The good mechanical and healable properties of this polymer can be ascribed to the unique coordination bond strength and coordination conformation of Fe(III)‐triazole coordination complex.

  相似文献   


17.
The cure behavior and properties of oligomeric bisphenol A‐based PEEK‐like phthalonitrile (PN) are thoroughly examined in this article. The resin is easily processed from the melt at a relatively low temperature (150–200 °C) and the monomer cure occurs in a controlled manner as a function of the amine content and processing thermal conditions. Dynamic mechanical measurements and thermogravimetric analysis show that the polymer properties improve as the maximum PN postcure temperature is increased to 415 °C. The effects of the amine and polymer postcure conditions on the flexural and tensile properties of the PN polymer are investigated. The mechanical properties of the polymer are maximized after postcuring to moderate temperatures (330–350 °C). The polymer exhibits an average flexural strength and tensile strength at break of 117 and 71 MPa, respectively. After oxidative aging at 302 °C for 100 h, the polymer retains excellent mechanical properties. The average flexural and tensile strength retention of the polymers are 81 and 75%, respectively. Microscale calorimetric measurements reveal that the flammability parameters of the oligomeric PN are low compared to other thermosets. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3769–3777  相似文献   

18.
The influence of the surface chemistry of the cellulose fiber and polymer matrix on the mechanical and thermal dynamic mechanical properties of cellulose‐fiber‐reinforced polymer composites was investigated. The cellulose fiber was treated either with a coupling agent or with a coupling‐agent treatment followed by the introduction of quaternary ammonium groups onto the fiber surface, whereas the polymer matrix, with opposite polar groups such as polystyrene incorporated with sulfonated polystyrene and poly(ethylene‐co‐methacrylic acid), was compounded with the fiber. The grafting of the fiber surface was investigated with Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy. Experimental results showed that an obvious improvement in the mechanical strength could be achieved for composites with an ionic interface between the fiber and the polymer matrix because of the adhesion enhancement of the fiber and the matrix. The improved adhesion could be ascribed to the grafted ionic groups at the cellulose‐fiber surface. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2022–2032, 2003  相似文献   

19.
Homopolymerization of octadecene‐1 at different reaction conditions has been studied. Significant chain running can be seen at higher polymerization temperatures. Interestingly, insertion of octadecene‐1 into a sterically hindered nickel‐cation/carbon (secondary) bond is observed. The microstructure of the polymer was established using NMR spectroscopy. The effects of chain running on polymer melting, crystallization behavior, and dynamic mechanical thermal properties were studied using DSC and DMTA. The extent of chain running (i.e., 2,ω‐, 1,ω‐enchainments) decreases with an increase in the carbon number of α‐olefins. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 191–210, 2007  相似文献   

20.
In oil well treatments, such as matrix stimulations or water shut‐off, it is often necessary to temporary isolate or protect productive zones with chemical diverting agents. In this work, a solution of peroxide crosslinked styrene‐butadiene rubber (SBR) has been transformed to a self‐degradable gel system by adding hydroperoxide as a degradation agent to the formulation. This oil‐based self‐degradable gel has been characterized by linear oscillatory rheometry. In situ and ex situ experiments were performed to evaluate the evolution of crosslinking and degradation reactions, including the liquid‐solid transition. Relaxation time spectra were calculated from dynamic mechanical frequency sweeps. Structural changes in the polymer network were visible within the relaxation time spectra, since it qualitatively showed the contribution of local simple entanglements and chemical covalent bonds to the final rheological behavior. The influence of peroxide concentration, polymer concentration, hydroperoxide concentration, and temperature have been studied and described in terms of rheological changes. Finally, a hydrogen donor aromatic solvent was used as scavenger to retard both crosslinking and degradation reactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 433–444  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号