首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
郑宁  谢涛 《高分子学报》2017,(11):1715-1724
动态共价交联聚合物的研究具有悠久的历史,其早期的工作着眼于如何解决应力松弛带来的聚合物材料力学性能降低的问题.20世纪90年代以来,利用动态共价键来主动设计聚合物网络的特殊可适性逐渐成为研究主流,其中包括自修复和重加工性.然而,受到动态共价键的种类、通用性及所实现功能的特异性等限制,对于动态共价交联聚合物网络的研究尚停留在基础阶段.本文以本课题组近期在动态共价交联形状记忆聚合物的研究为基础,结合其他相关工作,展示了通用共价键(酯键及氨酯键)的动态可逆性,并利用其设计了具有特殊性能和潜在商业化价值的形状记忆聚合物.在此基础上,我们提出分子结构设计及宏观性能均不同于传统热塑性和热固性形状记忆聚合物的第3类形状记忆聚合物,即热适性形状记忆聚合物.  相似文献   

2.
Dynamic networks (DNs) recently reported in the literature are based on cross‐linked supramolecular chains or on covalent chains with reversible bonds. As originally pointed out by Lehn, these networks should be regarded as dynamic materials exhibiting adaptive features due to continuous scrambling of their bonds and sequences. Results in the recent literature reveal that these networks undergo reversible long‐range deformation resembling that of rubber networks. The present analysis of this process in terms of the theory of composite networks is based on the expectation that the scrambling process should allow rupture of bonds in the undeformed state and their reformation in the stretched state. Accordingly, a permanent set of the resting length of DNs should generally be expected and set materials should retain long‐range elasticity relative to the set state. However, only a limited set is shown by DNs, implying that a strong memory of the initial network topology assists elastic recovery of the original dimensions. The analysis of reported experimental data further reveals that the stress‐strain dependence of dynamic networks accurately follows the classical rubber elasticity theory. In this respect, DNs show better rubber behavior than typical covalent networks. Consistently with theoretical predictions, this surprising finding suggests that bond scrambling relieves local strain constraints on the fluctuations of networks junctions and favors the recovery of the initial network topology. Scrambling therefore allows compliance under stress and enhanced recovery when stress is released. Unprecedented applications of these advanced materials thus become foreseeable.  相似文献   

3.
Crosslinked polymers (CLPs) exhibit exceptional mechanical properties as well as good chemical and solvent resistance. However, their reprocessing, recycling, and modification remain difficult. One promising approach to overcome this limitation is to introduce dynamic covalent bonds that enable chain‐exchange reactions and network‐structure rearrangements in identical polymer networks (A–A fusion), resulting in self‐healing and reprocessing properties. Reported here is the fusion of two distinct polymer networks (A–B fusion) by the dynamic behavior of bis(2,2,6,6‐tetramethylpiperidin‐1‐yl)disulfide (BiTEMPS) at the interface between different CLPs. The appearance, swelling behavior, and mechanical properties of the fused samples indicate exchange reactions of the BiTEMPS units and the formation of topological bonds at the interface, commensurate with the generation of a CLP that exhibits tunable properties.  相似文献   

4.
In recent years, interest in shape‐persistent organic cage compounds has steadily increased, not least because dynamic covalent bond formation enables such structures to be made in high to excellent yields. One often used type of dynamic bond formation is the generation of an imine bond from an aldehyde and an amine. Although the reversibility of the imine bond formation is advantageous for high yields, it is disadvantageous for the chemical stability of the compounds. Amide bonds are, in contrast to imine bonds much more robust. Shape‐persistent amide cages have so far been made by irreversible amide bond formations in multiple steps, very often accompanied by low yields. Here, we present an approach to shape‐persistent amide cages by exploiting a high‐yielding reversible cage formation in the first step, and a Pinnick oxidation as a key step to access the amide cages in just three steps. These chemically robust amide cages can be further transformed by bromination or nitration to allow post‐functionalization in high yields. The impact of the substituents on the gas sorption behavior was also investigated.  相似文献   

5.
The design of structurally dynamic molecular networks can offer strategies for fabricating stimuli‐responsive adaptive materials. Herein we first report a gas‐responsive dynamic gel system based on frustrated Lewis pair (FLP) chemistry. Two trefoil‐like molecules with bulky triphenylborane and triphenylphosphine groups are synthesized as complementary Lewis acid and base with trivalent sites. They can together bind CO2 gas molecules and further form a cross‐linked network via the bonding interactions between FLPs and CO2. Such CO2‐bridged dative linkages are shown to be dynamic covalent bonds, which endow the frustrated Lewis network with adaptable behaviors and unprecedented gas‐regulated viscoelastic, mechanical, and self‐healing performance. This study is an initial attempt to apply the FLP concept in materials chemistry, but we believe that this strategy will open a promising future for gas‐sensitive smart materials.  相似文献   

6.
This Highlight presents an overview of the rapidly growing field of dynamic covalent polymers. This class of polymers combines intrinsic reversibility with the robustness of covalent bonds, thus enabling formation of mechanically stable, polymer‐based materials that are responsive to external stimuli. It will be discussed how the inherent dynamic nature of the dynamic covalent bonds on the molecular level can be translated to the macroscopic level of the polymer, giving access to a range of applications, such as stimuli‐responsive or self‐healing materials. A primary distinction will be made based on the type of dynamic covalent bond employed, while a secondary distinction will be based on the consideration whether the dynamic covalent bond is used in the main chain of the polymer or whether it is used to allow side chain modification of the polymer. Emphasis will be on the chemistry of the dynamic covalent bonds present in the polymer, in particular in relation to how the specific (dynamic) features of the bond impart functionality to the polymer material, and to the conditions under which this dynamic behavior is manifested. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3551–3577.  相似文献   

7.
Room-temperature phosphorescence (RTP) polymers, whose emission can persist for a long period after photoexcitation, are of great importance for practical applications. Herein, dynamic covalent boronic ester linkages with internal B−N coordination are incorporated into a commercial epoxy matrix. The reversible dissociation of B−N bonds upon loading provides an efficient energy dissipation pathway for the epoxy network, while the rigid epoxy matrix can inhibit the quenching of triplet excitons in boronic esters. The obtained polymers exhibit enhanced mechanical toughness (12.26 MJ m−3), ultralong RTP (τ=540.4 ms), and shape memory behavior. Notably, there is no apparent decrease in the RTP property upon prolonged immersion in various solvents because the networks are robust. Moreover, the dynamic bonds endow the polymers with superior reprocessablity and recyclability. These novel properties have led to their potential application for information encryption and anti-counterfeiting.  相似文献   

8.
以三羟甲基丙烷三缩水甘油醚(TTE)为基体, 2,2′-(1,4-亚苯基)-双[4-硫醇1,3,2-二氧杂戊烷](BDB)和3,3-二硫代二丙酸(DTDPA)为交联剂, 通过环氧-巯基“点击”反应和环氧-羧酸酯化反应, 制备了基于多重动态共价键(硼酸酯键、 二硫键和酯键)的环氧类玻璃网络. 利用红外光谱和拉曼光谱对其结构进行了表征, 结果表明, 环氧类玻璃中不仅存在硼酸酯键、 二硫键和酯键, 还存在可逆氢键, 并且大量氢键的存在能提高环氧类玻璃的交联度. 对所得环氧网络的热稳定性、 热机械性能和力学性能进行了测试, 并对基于多重动态共价键环氧网络进行了自修复、 焊接、 形状记忆和再加工能力测试. 结果表明, 在80 ℃下可实现网络的完全自修复、 再加工与焊接, 且焊接后样品的力学性能(拉伸强度)恢复率在80%以上, 具有优异的功能性.  相似文献   

9.
Supramolecular self‐assembly of 24 forklike mesogenic ligands and 12 transition metal ions led to the formation of giant spherical coordination complexes that exhibit liquid‐crystalline (LC) phases. Self‐healing LC supramolecular gels were also obtained through the introduction of these LC nanostructured supramolecular giant spherical complexes into dynamic covalent networks formed by cross‐linkers and bifunctional polymers. The giant spherical structures of the PdII complexes with 72 rodlike moieties on the periphery were characterized by NMR, diffusion‐ordered NMR spectroscopy, and mass spectrometry. These complexes are stable and exhibit lyotropic LC behavior, while the mesogenic ligands show thermotropic LC properties. The self‐assembled LC structures of the spherical complexes can be tuned by the length of the rodlike moieties.  相似文献   

10.
The research activities in the development of recyclable and reprocessable covalently crosslinked networks, and the construction of polymers from renewable resources are both stemmed from the economical and environmental problems associated with traditional thermosets. However, there is little effort in combination of these two attractive strategies in material designs. This article reported a bio‐based vitrimer constructed from isosorbide‐derived epoxy and aromatic diamines containing disulfide bonds. The resulted dynamic epoxy resins showed comparable thermomechanical properties as compared to similar epoxy networks cured by traditional curing agent. Rheological tests demonstrated the fast stress relaxation of the dynamic network due to the rapid metathesis of disulfide bonds at temperature higher than glass transition temperature. This feature permitted the recycling and reprocessing of the fragmented samples for several times by hot press. The dynamic epoxy resins also exhibited shape‐memory effect, and it is demonstrated that the shape recovery ratio could be readily adjusted by controlling the stress relaxation in the temporary state at programming temperature. Moreover, the degradability of the dynamic epoxy resins in alkaline aqueous solution was also demonstrated. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1790–1799  相似文献   

11.
The design of covalent adaptable networks (CANs) relies on the ability to trigger the rearrangement of bonds within a polymer network. Simple activated alkynes are now used as versatile reversible cross‐linkers for thiols. The click‐like thiol–yne cross‐linking reaction readily enables network synthesis from polythiols through a double Michael addition with a reversible and tunable second addition step. The resulting thioacetal cross‐linking moieties are robust but dynamic linkages. A series of different activated alkynes have been synthesized and systematically probed for their ability to produce dynamic thioacetal linkages, both in kinetic studies of small molecule models, as well as in stress relaxation and creep measurements on thiol–yne‐based CANs. The results are further rationalized by DFT calculations, showing that the bond exchange rates can be significantly influenced by the choice of the activated alkyne cross‐linker.  相似文献   

12.
Development of thermosets that can be repeatedly recycled via both chemical route (closed-loop) and thermo-mechanical process is attractive and remains an imperative task. In this work, we reported a triketoenamine based dynamic covalent network derived from 2,4,6-triformylphloroglucinol and secondary amines. The resulting triketoenamine based network does not have intramolecular hydrogen bonds, thus reducing its π-electron delocalization, lowering the stability of the tautomer structure, and enabling its dynamic feature. By virtue of the highly reversible bond exchange, this novel dynamic covalent bond enables the easy construction of highly crosslinked and chemically reprocessable networks from commercially available monomers. The as-made polymer monoliths exhibit high mechanical properties (tensile strength of 79.4 MPa and Young's modulus of 571.4 MPa) and can undergo a monomer-network-monomer (yields up to 90 %) recycling mediated by an aqueous solution, with the new-generation polymer capable of restoring the material strength to its original state. In addition, owing to its dynamic nature, a catalyst-free and low-temperature reprogrammable covalent adaptable network (vitrimer) was achieved. The design concept reported herein can be applied to the development of other novel vitrimers with high repressibility and recyclability, and sheds light on future design of sustainable polymers with minimal environmental impact.  相似文献   

13.
Control of equilibrium and non‐equilibrium thermomechanical behavior of poly(diketoenamine) vitrimers is shown by incorporating linear polymer segments varying in molecular weight (MW) and conformational degrees of freedom into the dynamic covalent network. While increasing MW of linear segments yields a lower storage modulus at the rubbery plateau after softening above the glass transition (Tg), both Tg and the characteristic time of stress relaxation are independently governed by the conformational entropy of the embodied linear segments. Activation energies for bond exchange in the solid state are lower for networks incorporating flexible chains; the network topology freezing temperature decreases with increasing MW of flexible linear segments but increases with increasing MW of stiff segments. Vitrimer reconfigurability is therefore influenced not only by the energetics of bond exchange for a given network density, but also the entropy of polymer chains within the network.  相似文献   

14.
A simple and versatile method for the modification of a broad spectrum of surfaces with thin polymer films through the thermally or photochemically induced generation of surface‐attached polymer networks is reported. The system is based on copolymers containing diazomalonate groups, which can be activated by heat or light. To this end, the copolymers are deposited from solution onto solid substrates by standard techniques of thin‐film deposition (spin coating, dip coating). Upon activation the diazomalonate group decomposes and forms a carbene, which induces C−H insertion crosslinking (CHic) reactions. In the course of this process network formation and covalent surface attachment occur at the same time. The crosslinking process proceeds very rapidly, especially when the carbenes generated in the activation process cannot undergo Wolff‐rearrangement. The presented system can be used for the generation of a wide range of polymer layers and microstructures on a broad spectrum of surfaces.  相似文献   

15.
Phase segregation between different macromolecules and specific weak interactions are the basis of molecular organization in many biological systems, which are held together by attractive hydrogen bonds (H‐bonds) and dissociated by phase segregation. We report significant changes in the association behavior of covalent H‐bonds by the phase of attached polymer chains. Depending on the aggregation state, we observed either intact H‐bonds despite segregation of the phases, or macrophase separation with a larger amount of H‐bonding dissociation.  相似文献   

16.
Dynamic covalent bonds (DCBs) have received significant attention over the past decade. These are covalent bonds that are capable of exchanging or switching between several molecules. Particular focus has recently been on utilizing these DCBs in polymeric materials. Introduction of DCBs into a polymer material provides it with powerful properties including self‐healing, shape‐memory properties, increased toughness, and ability to relax stresses as well as to change from one macromolecular architecture to another. This Minireview summarizes commonly used powerful DCBs formed by simple, often “click” reactions, and highlights the powerful materials that can result. Challenges and potential future developments are also discussed.  相似文献   

17.
The on‐surface polymerization of 1,3,6,8‐tetrabromopyrene (Br4Py) on Cu(111) and Au(111) surfaces under ultrahigh vacuum conditions was investigated by a combination of scanning tunneling microscopy (STM), X‐ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. Deposition of Br4Py on Cu(111) held at 300 K resulted in a spontaneous debromination reaction, generating the formation of a branched coordination polymer network stabilized by C?Cu?C bonds. After annealing at 473 K, the C?Cu?C bonds were converted to covalent C?C bonds, leading to the formation of a covalently linked molecular network of short oligomers. In contrast, highly ordered self‐assembled two‐dimensional (2D) patterns stabilized by both Br?Br halogen and Br?H hydrogen bonds were observed upon deposition of Br4Py on Au(111) held at 300 K. Subsequent annealing of the sample at 473 K led to a dissociation of the C?Br bonds and the formation of disordered metal‐coordinated molecular networks. Further annealing at 573 K resulted in the formation of covalently linked disordered networks. Importantly, we found that the chosen substrate not only plays an important role as catalyst for the Ullmann reaction, but also influences the formation of different types of intermolecular bonds and thus, determines the final polymer network morphology. DFT calculations further support our experimental findings obtained by STM and XPS and add complementary information on the reaction pathway of Br4Py on the different substrates.  相似文献   

18.
Supramolecular polymers that can heal themselves automatically usually exhibit weakness in mechanical toughness and stretchability. Here we exploit a toughening strategy for a dynamic dry supramolecular network by introducing ionic cluster‐enhanced iron‐carboxylate complexes. The resulting dry supramolecular network simultaneous exhibits tough mechanical strength, high stretchability, self‐healing ability, and processability at room temperature. The excellent performance of these distinct supramolecular polymers is attributed to the hierarchical existence of four types of dynamic combinations in the high‐density dry network, including dynamic covalent disulfide bonds, noncovalent H‐bonds, iron‐carboxylate complexes and ionic clustering interactions. The extremely facile preparation method of this self‐healing polymer offers prospects for high‐performance low‐cost material among others for coatings and wearable devices.  相似文献   

19.
In this work, a novel soft shape memory polymer nanocomposite derived from a bacterial medium‐chain‐length polyhydroxyalkanoate, poly(3‐hydroxyoctanoate‐co‐3‐hydroxyundecenoate) (PHOU), used to form a covalent network grafted with polyhedral oligomeric silsesquioxane (POSS), a crystallizable inorganic–organic hybrid nanofiller, was prepared. The PHOU–POSS nanocomposite, PHOU–POSSw‐net [w (= POSS content, wt %) = 0, 20, 25, 30, and 38], is a completely amorphous elastomer (w ≤ 20) or contains POSS nanocrystals embedded in the amorphous PHOU matrix (w ≥ 25). The hybrid nanostructure of PHOU–POSSw‐net (w ≥ 25) is featured by its reconfigurability, based on aggregation and disaggregation of POSS covalently connected to the PHOU network, which enables excellent shape fixing and recovery. Furthermore, it exhibits soft and elastomeric mechanical properties even in the fixed state. Taking advantage of the shape memory ability as well as the softness in the fixed state, we demonstrate microscale dynamic surface topography of PHOU–POSSw‐net. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

20.
Aggregation-induced emission(AIE) based luminescent materials are generating intensive interest due to their unique fluorescence in the aggregation state. Herein we report a strategy of dynamic covalent chemistry(DCC) controlled AIE luminogens for the regulation of multicolor emission in reversible covalent polymer networks. Tetraphenylethene derived ring-chain tautomers were prepared, and the emission was readily controlled through multimode, such as changing the solvent, adding the base, and d...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号