首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the past few decades, nanoparticles of noble metals such as silver exhibited significantly distinct physical, chemical and biological properties from their bulk counterparts. Nano-size particles of less than 100 nm in diameter are currently attracting increasing attention for the wide range of new applications in various fields of industry. Such powders can exhibit properties that differ substantially from those of bulk materials, as a result of small particle dimension, high surface area, quantum confinement and other effects. Most of the unique properties of nanoparticles require not only the particles to be of nano-sized, but also the particles be dispersed without agglomeration. Discoveries in the past decade have clearly demonstrated that the electromagnetic, optical and catalytic properties of silver nanoparticles are strongly influenced by shape, size and size distribution, which are often varied by varying the synthetic methods, reducing agents and stabilizers. Accordingly, this review presents different methods of preparation silver nanoparticles and application of these nanoparticles in different fields.  相似文献   

2.
《印度化学会志》2023,100(1):100866
The advancement in nanotechnology, nanoparticles are reported to have applications in various fields. Their positive role in the environment, especially in plant ecosystem, is extensively studied nowadays. Among the metal nanoparticles, the silver nanoparticles (AgNPs) are receiving special attention because of their ability to increase the growth and yield in many crops. Although many studies are found that shows the toxic effects of AgNPs, the perspective of the present review is to collect the information about their positive roles in growth and yield enhancement of crops. During this overview, there are many methods of synthesizing silver AgNPs nanoparticles discussed, including chemical, bacterial-induced, fungal-derived and plant-mediated synthesis. There are numerous approaches towards the synthesis of AgNPs, including biological and chemical methods. Because of the use of reducing agents such as sodium borohydride in the synthesis of AgNPs, conventional methods have opened a path that threatens environmental sustainability. The chemical synthesis of silver colloids is the consequence of increased aggregation as storage time increases. AgNPs possess unique properties which has many applications such as antimicrobial and anticancer activities. It was concluded that cautious and sensible use of nanotechnology can warrant food security through boosting agricultural production. This review is aimed at providing an insight into the syntheses of AgNPs, its significant applications in various fields, and characterization techniques involved.  相似文献   

3.
Due to their unique antimicrobial properties silver nanocrystallites have garnered substantial attention and are used extensively for biomedical applications as an additive to wound dressings, surgical instruments and bone substitute materials. They are also released into unintended locations such as the environment or biosphere. Therefore it is imperative to understand the potential interactions, fate and transport of nanoparticles with environmental biotic systems. Numerous factors including the composition, size, shape, surface charge, and capping molecule of nanoparticles are known to influence cell cytotoxicity. Our results demonstrate that the physical/chemical properties of the silver nanoparticles including surface charge, differential binding and aggregation potential, which are influenced by the surface coatings, are a major determining factor in eliciting cytotoxicity and in dictating potential cellular interactions. In the present investigation, silver nanocrystallites with nearly uniform size and shape distribution but with different surface coatings, imparting overall high negativity to high positivity, were synthesized. These nanoparticles included poly(diallyldimethylammonium) chloride-Ag, biogenic-Ag, colloidal-Ag (uncoated), and oleate-Ag with zeta potentials +45 ± 5, -12 ± 2, -42 ± 5, and -45 ± 5 mV, respectively; the particles were purified and thoroughly characterized so as to avoid false cytotoxicity interpretations. A systematic investigation on the cytotoxic effects, cellular response, and membrane damage caused by these four different silver nanoparticles was carried out using multiple toxicity measurements on mouse macrophage (RAW-264.7) and lung epithelial (C-10) cell lines. Our results clearly indicate that the cytotoxicity was dependent on various factors such as surface charge and coating materials used in the synthesis, particle aggregation, and the cell-type for the different silver nanoparticles that were investigated. Poly(diallyldimethylammonium)-coated Ag nanoparticles were found to be the most toxic, followed by biogenic-Ag and oleate-Ag nanoparticles, whereas uncoated or colloidal silver nanoparticles were found to be the least toxic to both macrophage and lung epithelial cells. Also, based on our cytotoxicity interpretations, lung epithelial cells were found to be more resistant to the silver nanoparticles than the macrophage cells, regardless of the surface coating.  相似文献   

4.
In the present study, silver metal nanofibers have been successfully prepared by using the electrospinning technique. Silver nanofibers have been produced by electrospinning a sol-gel consisting of poly(vinyl alcohol) and silver nitrate. The dried nanofiber mats have been calcined at 850 degrees C in an argon atmosphere. The produced nanofibers do have distinct plasmon resonance compared with the reported silver nanoparticles. Contrary to the introduced shapes of silver nanoparticles, the nanofibers have a blue-shifted plasmon resonance at 330 nm. Moreover, the optical properties study indicated that the synthesized nanofibers have two band gap energies of 0.75 and 2.34 eV. An investigation of the electrical conductivity behavior of the obtained nanofibers shows thermal hystersis. These privileged physical features greatly widen the applications of the prepared nanofibers in various fields.  相似文献   

5.
Metal nanoparticles with different shapes have different crystallographic faces. It is therefore of interest to study the effect of the shape of metal nanoparticles on their catalytic activity in various organic and inorganic reactions. Truncated triangular silver nanoplates with well‐defined planes were synthesized by a simple solvothermal approach. The activity of these truncated triangular silver nanoparticles was compared with that of cubic and near‐spherical silver nanoparticles in the oxidation of styrene in colloidal solution. It was found that the crystal faces of silver nanoparticles play an essential role in determining the catalytic oxidation properties. The silver nanocubes had the {100} crystal faces as the basal plane, whereas truncated triangular nanoplates and near‐spherical nanoparticles predominantly exposed the most‐stable {111} crystal faces. As a result, the rate of the reaction over the nanocubes was more than 14 times higher than that on nanoplates and four times higher than that on near‐spherical nanoparticles.  相似文献   

6.
Nanomaterials have supported important technological advances due to their unique properties and their applicability in various fields, such as biomedicine, catalysis, environment, energy, and electronics. This has triggered a tremendous increase in their demand. In turn, materials scientists have sought facile methods to produce nanomaterials of desired features, i.e., morphology, composition, colloidal stability, and surface chemistry, as these determine the targeted application. The advent of photoprocesses has enabled the easy, fast, scalable, and cost- and energy-effective production of metallic nanoparticles of controlled properties without the use of harmful reagents or sophisticated equipment. Herein, we overview the synthesis of gold and silver nanoparticles via photochemical routes. We extensively discuss the effect of varying the experimental parameters, such as the pH, exposure time, and source of irradiation, the use or not of reductants and surfactants, reagents’ nature and concentration, on the outcomes of these noble nanoparticles, namely, their size, shape, and colloidal stability. The hypothetical mechanisms that govern these green processes are discussed whenever available. Finally, we mention their applications and insights for future developments.  相似文献   

7.
金属纳米材料具有不同于宏观块体材料的特殊性质. 在银纳米结构中, 银纳米片因其独特的形貌依赖光学性质备受关注, 该特性已在离子检测、分子染色、表面增强拉曼光谱(SERS)、表面荧光增强、生物医学等领域显示了重要应用价值. 本文从银纳米片的制备方法入手, 首先综述了银纳米片的各种制备方法以及实验条件(如光照的波长、表面活性剂种类、还原剂种类)对产物形貌的影响. 其次介绍了银纳米片的奇特光学性质, 总结了银纳米片的几种重要生长机制, 最后介绍了银纳米片的应用价值, 并对银纳米片的研究前景做了展望.  相似文献   

8.
周海华  宋延林 《化学通报》2021,84(11):1122-1129
银纳米材料因具有导热导电性能好、光电性能优良及抗菌能力强等优点而引起广泛关注,近年来其制备方法得到广泛研究。已报道的制备方法可分为化学法、物理法和生物法等,其中化学还原法可以通过使用不同的还原剂、包裹试剂及助剂,实现不同形貌及粒径的银纳米材料的快速制备。本文综述了化学还原法制备颗粒状、线形、片状、立方体及其它形貌的银纳米材料的原理及应用,并展望了银纳米材料工业化制备及应用研究的发展趋势。可控制备多形貌银纳米材料对于电子行业、医药生物以及传感器等相关领域的发展具有重要意义。  相似文献   

9.
ABSTRACT

Nanotechnology is influencing life in many ways. Researchers are developing their interest in biofabrication of silver nanoparticles because of its excellent properties and boundless utilisation in almost every branch of science. Plant extract is used to synthesise silver nanoparticles and reduce silver ion, and act as capping and reducing agent. The phyto-chemicals and metabolites present in the extract help in biogenic reduction of silver ion, forming non-toxic nanoparticles. This review focuses on the green synthesis of nanoparticles from various plants and their parts as an easy and eco-friendly approach.  相似文献   

10.
Silver nanoparticles are recognized as effective antimicrobial agents and have been implemented in various consumer products including washing machines, refrigerators, clothing, medical devices, and food packaging. Alongside the silver nanoparticles benefits, their novel properties have raised concerns about possible adverse effects on biological systems. To protect consumer's health and the environment, efficient monitoring of silver nanoparticles needs to be established. Here, we present the development of human metallothionein (MT) based surface plasmon resonance (SPR) sensor for rapid detection of nanosilver. Incorporation of human metallothionein 1A to the sensor surface enables screening for potentially biologically active silver nanoparticles at parts per billion sensitivity. Other protein ligands were also tested for binding capacity of the nanosilver and were found to be inferior to the metallothionein. The biosensor has been characterized in terms of selectivity and sensitivity towards different types of silver nanoparticles and applied in measurements of real-life samples-such as fresh vegetables and river water. Our findings suggest that human MT1-based SPR sensor has the potential to be utilized as a routine screening method for silver nanoparticles, that can provide rapid and automated analysis dedicated to environmental and food safety monitoring.  相似文献   

11.
Silver ions being less toxic than silver nanoparticles, a more safe material can be obtained to be used as antimicrobial coating. This can be achieved by using thiol chemistry and covalently attach the silver nanoparticles in the coating. Our aim is to produce a coating having antimicrobial properties of silver ions but with the silver nanoparticles firmly attached in the coating. Here, we present a way to produce silver nanoparticles that can be used as a component in a coating or as such to produce an antimicrobial coating. The silver nanoparticles presented here are stabilized by a copolymer (poly(butyl acrylate–methyl methacrylate)) that is soft and has well-known good film-producing properties. The reversible addition-fragmentation chain transfer radical polymerization technique used to prepare the polymers provides conveniently a thiol group for effective binding of the silver nanoparticles to the polymers and thus to the coating.  相似文献   

12.
Polyaniline (PANI) is one of the most extensively used conducting polymer due to its fascinating properties including conducting, thermal, optical, magnetic and electrochemical properties, simple synthesis procedure and low cost of monomer. It has attracted major attention in a variety of applications including electrochemical sensors, catalysts, supercapacitors and biosensors. However, its limitations such as insolubility in common solvents, low process-ability and poor mechanical properties have led to the development of new approaches to improve it properties. Metal nanoparticles (MNPs) such as silver, gold, copper and palladium have been combined with PANI to improve on its properties which has led to a new class of materials known as metal/PANI nanocomposites. These hybrid nanocomposites incorporate advantages of both MNPs and polymers which effectively improves the properties of the individual materials. Various synthesis techniques including in situ polymerization, ɤ-radiolysis, electrodeposition, complexation, vacuum deposition and interfacial polymerization have been used in the formation of metal/PANI nanocomposites. These nanocomposites have been used in various sensor and biosensor applications due to their excellent conductivity, ease of synthesis, excellent redox potentials, chemical and thermal stability. This review highlights the various metal/PANI nanocomposites, their various synthesis techniques and their application in sensors and biosensors. The importance of these nanocomposites in sensing and signaling various toxic heavy metals such as mercury, lead and silver and toxic gases such as hydrogen sulphide, ammonia and chloroform has been discussed. In addition the review covers the applications of metal/PANI nanocomposites in biosensor systems for the detection of glucose, DNA, protein, cholesterol, drugs and hydrogen peroxide.  相似文献   

13.
Stable silver nanoparticles have been synthesized using gum karaya acting as both reducing and stabilizing agent without using any synthetic reagent. The reaction is performed using water, which is an environmentally safe solvent. This reaction was carried out in an autoclave at a pressure of 15 psi and 120 °C temperature by varying the time. The influence of different parameters such as time, change of concentration of silver nitrate and concentration of gum karaya on the formation of silver nanoparticles has been studied. The synthesized silver nanoparticles are characterized by UV–Vis spectroscopy, FTIR, XRD and TEM. UV–Vis analysis of the sample confirmed the formation of silver nanoparticles exhibiting a sharp peak at a wavelength of 420 nm. TEM micrographs showed the formation of well-dispersed silver nanoparticles of size 2–4 nm. The antimicrobial activity of silver nanoparticles stabilized in gum karaya is tested against Escherichia coli, Micrococcus luteus and is found to be possessing inhibiting property. The silver nanoparticles stabilized in gum karaya exhibited very good catalytic activity and the kinetics of the reaction was found to be pseudo first order with respect to the 4-nitrophenol.  相似文献   

14.
Cotton is one of the most popular natural fibres, composed mainly of cellulose, which finds a wide range of applications in paper, textile and health care products industry. Researchers have focused their interest on the synthesis of cotton nanocomposites, which enhances its mechanical, thermal and antimicrobial properties by the incorporation of various nanoparticles into the cotton matrix. Silver is one of the most popular antimicrobial agents with a wide spectrum of antibacterial and antifungal activity that results from a complex mechanism of its interactions with the cells of harmful microorganism. In this work, electron beam radiation was applied to synthesise silver nanostructures in cotton fibres. Investigations of the influence of the initial silver salt concentration on the size and distribution of the obtained silver nanostructures were carried out. A detailed characterisation of these nanocomposites with SEM-BSE and EDS methods was performed. TGA and DSC analyses were performed to assess the influence of different size silver nanoparticles and the effect of electron beam irradiation on the thermal properties of cotton fibres. A microbiological investigation to determine the antibacterial activity of Ag-cotton nanocomposites was carried out.  相似文献   

15.
Novel silver nanoparticles/polyaniline composites were obtained through a two-phase water/toluene interfacial reaction. We show that by rigorously controlling the reaction time, different structures of the nanocomposites can be obtained, such as a thin sheet of polyaniline around the silver nanoparticles or a polymer mass with nanoparticles homogeneously embedded within it. Samples were characterized by FT-IR, UV-vis-NIR and Raman spectroscopy, X-ray diffraction, cyclic voltammetry, TEM, and HRTEM. Conductivity and current-voltage characteristics of the nanocomposites were measured, and the results indicate that different properties result from the different structures in which the nanocomposites were formed.  相似文献   

16.
Synthesis of nanoparticles by microemulsion method is an area of considerable current interest. Since the discovery of microemulsions, they have attained increasing significance both in basic research and in different industrial fields. Due to their unique properties, namely, ultralow interfacial tension, large interfacial area, thermodynamic stability and the ability to solubilize otherwise immiscible liquids. The uses and applications of microemulsions are numerous in chemical and biological fields. The nanoparticles not only are of basic scientific interest, but also have resulted in important technological applications, such as catalysts, high-performance ceramic materials, microelectronic devices, high-density magnetic recording and drug delivery. The microemulsion technique promises to be one of the versatile preparation method which enables to control the particle properties such as mechanisms of particle size control, geometry, morphology, homogeneity and surface area. This review aims to give a vivid look on the use of microemulsions for synthesizing and controlling the grain size and morphology of the nanoparticles and at the same time will summarize some recent works carried out in the synthesis of organic and inorganic nanoparticles by this method.  相似文献   

17.
There is increased attention paid to metallic nanoparticles due to their intensive use in various branches of agriculture and biotechnology, such as pest management, nanosensors, gene delivery, seed treatment, etc. There has been growing interest in applying environmentally friendly strategies for synthesizing nanoparticles without using substances which are hazardous to the environment. Biological practices for the synthesis of nanoparticles have been considered as possible ecofriendly alternatives to chemical synthesis. In the present study, we used biogenic silver and copper nanoparticles which were prepared by a previously reported green method. Moreover, the problem of chemical residues, which usually remain along with chemically synthesized nanoparticles and limit their application, was solved by developing such a green synthesis approach. To study the antibacterial activity of silver and copper nanoparticles, Pseudomonas aeruginosa was used; for the evaluation of antifungal activity, the pathogenic fungi Botrytis cinerea, Pilidium concavum and Pestalotia sp. were applied. To the best of our knowledge, this study represents the first time that the antifungal impact of a nanoparticle has been tested on Pilidium concavum and Pestalotia sp. Silver nanoparticles were found to be the more effective antimicrobial agent against all examined pathogens in comparison to copper nanoparticles. Data from such investigations provide valuable preliminary data on silver nanoparticle-based compounds or composites for use in the management of different pathogens.  相似文献   

18.
The plasmon resonance of metal nanostructures affects neighboring semiconductors, quenching or enhancing optical transitions depending on various parameters. These plasmonic properties are currently investigated with respect to topics such as photovoltaics and optical detection and could also have important consequences for photocatalysis. Here the effect of silver nanoparticles of a size up to 30 nm and at maximum 0.50 monolayers on the photocatalytic oxidation of ethylene on TiO2 is studied. Since the plasmon resonance energy of silver nanoparticles is comparable with the TiO2 band gap, dipole-dipole interaction converts excitons into heat at the silver nanoparticle. This indicates that plasmonic interaction with TiO2 semiconductor catalysts can reduce the photo catalytic activity considerably.  相似文献   

19.
Colloidal silver has gained wide acceptance as an antimicrobial agent, and various substrates coated with nanosilver such as fabrics, plastics, and metal have been shown to develop antimicrobial properties. Here, a simple method to develop coating of colloidal silver on paper using ultrasonic radiation is presented, and the coatings are characterized using X-ray diffraction (XRD), high resolution scanning electron microscope (HRSEM), and thermogravimetry (TGA) measurements. Depending on the variables such as precursor concentrations and ultrasonication time, uniform coatings ranging from 90 to 150 nm in thickness have been achieved. Focused ion beam (FIB) cross section imaging measurements revealed that silver nanoparticles penetrated the paper surface to a depth of more than 1 μm, resulting in highly stable coatings. The coated paper demonstrated antibacterial activity against E. coli and S. aureus, suggesting its potential application as a food packing material for longer shelf life.  相似文献   

20.
With a view to creating a specific unique chip, its wearable, flexible and conductor.utilizing conventional physical methods like grafting and assembling metals (silver, copper, and gallium indium alloy) on graphene as composite, then immersed inside PDMS matrix. However, there is an incompatibility between liquid gallium and graphene sheet. So we used the abridge of metallic nanoparticles as silver and copper as a boundary barrier to its different charges to maximize interfacial surface interaction in between amorphous carbon and liquid gallium. to evaluate the chip conduct during the fabrication process we utilize various characterization such as electrochemical EIS and CVT to justify conductivity besides electrochemical reaction and oxidation and reduction, addition to measure the dielectric constant (?) of a composite at a different range of frequencies which is equal to 3.73 compared to PDMS 2.69.moreover its thermal stability (DSC) of prepared composite and tensile stress as an inductor for enforcement and enhancement physical properties, as well as, surface Morphology techniques characterize using TEM IR, and UV absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号