首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isotopic composition of single uranium and plutonium particles was measured with an inductively coupled plasma mass spectrometer (ICP-MS) and a thermal ionization mass spectrometer (TIMS). Particles deposited on a carbon planchet were first analyzed with an energy dispersive X-ray spectrometer (EDX) attached to a scanning electron microscope (SEM) and then transferred on to a silicon wafer using a manipulator. The particle on the silicon wafer was dissolved with nitric acid and the isotopic ratios of U and Pu were measured with ICP-MS and TIMS. The results obtained by both methods for particles of certified reference materials showed good agreement with the certified values within the expected uncertainty. The measurement uncertainties obtained in this study were similar for both mass spectrometric methods. This study was performed to establish the method of particle analysis with SEM, EDX, the particle manipulation and chemical preparation technique, and the measurement of isotopic ratios of U and Pu in a single particle by mass spectrometry.  相似文献   

2.
A mass restriction principle has been applied for the synthesis of precipitated calcium carbonate (PCC) with particle sizes from nanometer to micrometer via a simple emulsion liquid membrane (ELM) process. The internal liquid droplets in ELM were designed as individual microreactors in which the concentration and the total mass of the reaction chemicals were carefully mediated. Instrumental analysis, such as Fourier transform infrared (FTIR), wide X-ray diffraction (WXRD), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis, confirmed a predominant calcite form of the final product via this process. The comparison of calculated particle sizes with that obtained from experimental measurements using dynamic light scattering (DLS), transmission electron microscopy (TEM) and SEM analysis suggested that approximately one PCC particle was formed in one water-in-oil (w/o) droplet.  相似文献   

3.
Nickel-anchored curcumin-functionalized boehmite nanoparticles (BNPs@Cur-Ni) as a robust and versatile nanocatalyst was synthesized and well-characterized by using Fourier transform infrared (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray mapping, thermogravimetric analysis (TGA), differential thermal analysis (DTA), Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), and inductively coupled plasma optical emission spectroscopy (ICP-OES). The synthesis of 5-substituted 1H-tetrazoles and the oxidation of sulfides were conducted by BNPs@Cur-Ni with excellent turnover number (TON) and turnover frequency (TOF) outcomes. Also, the catalyst was reused for several sequential runs without Ni leaching or decreasing in reaction yield. Utilizing the curcumin and boehmite with a natural source as well as poly(ethylene glycol) (PEG) as a solvent in this simple protocol can be based on green chemistry rules.  相似文献   

4.
The Kosa (yellow sand) aerosol affects the global environment as well as human health because it migrates from the interior of China to other areas, absorbing various atmospheric elements. Investigation into individual Kosa aerosol particles, which are submicroscopic to several tens of micrometers in diameter, is required to resolving the issue. We installed a scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectrometer (EDX) on a synchrotron radiation (SR) beam line and introduced the SR beam into the SEM chamber for combinatorial application of SEM-EDX and SR X-ray fluorescence (SR-XRF) spectrometry to individual particles. It should be noted that detailed topographic observation by SEM and sensitive elemental analysis by SR-XRF, both crucial for individual particle measurement but which previously had to be carried out separately, were jointly performed inside the SEM chamber in this setup. Here, we show that SR-XRF results, in conjunction with SEM images, contributed toward resolving individual particle dispositions. Atmospheric sulfur primarily adheres to calcium in the aerosol particles and the particle surface roughens as a consequence of the chemical reaction between the two elements.  相似文献   

5.
由于分子筛膜的分离和催化作用, 分子筛膜包覆的传统催化剂颗粒可以实现高效的催化过程. 活性炭颗粒作为一种常用的催化剂载体, 由于其表面的憎水性和不平整, 在不规则活性炭颗粒表面直接水热合成包覆一层分子筛膜非常困难. 为了克服上述缺点, 本文采用一种勃姆石凝胶修饰的晶种法在活性炭颗粒表面合成连续的分子筛膜. 以勃姆石溶胶为前驱体, 在活性炭颗粒表面通过喷涂预先形成一层相对平整的勃姆石凝胶层以改善活性炭表面. 在随后的晶种涂覆过程中, 晶种分散液加入部分勃姆石溶胶为胶粘剂, 所得的晶种层覆盖载体完全, 与载体结合牢固, 无需焙烧处理. 将晶种涂覆后颗粒在旋转动态水热175℃处理6 h, 得到分子筛膜包覆的活性炭颗粒, 所得材料分别用X射线衍射和扫描电镜进行表征. 包覆的分子筛膜为MFI 结构, 厚度约为5μm. 对比实验表明, 没有勃姆石溶胶修饰的活性炭颗粒上不能成膜. 这种勃姆石凝胶修饰晶种法为在各种惰性载体上合成分子筛膜提供了便捷的方法.  相似文献   

6.
The possibility of scanning electron microscope (SEM) observation and energy dispersive X-ray (EDX) spectrometry analysis in microscale regions of insulating samples using diluted ionic liquid was investigated. It is possible to obtain clear secondary electron images of insulating samples such as a rock and mineral at 5,000 times magnification by dropping 10 μL of 1 wt% of 1-ethyl-3-methylimidazolium acetate (EMI-CH?COO) diluted with ethanol onto the samples. We also obtained EDX spectra of the samples in microscale regions (~5 μm2) without overlapping EDX spectra of other minerals with different composition. It might be possible to perform quantitative analysis of the samples if a method that does not need standard samples is applied or an X-ray detector sensitive for light elements was attached. The method of dropping 1 wt% EMI-CH?COO diluted with ethanol onto insulating samples is useful for SEM observation, EDX analysis in microscale regions, and the preservation of scarce rock and mineral samples because ionic liquid can be easily removed with acetone.  相似文献   

7.
In this paper, we report a thorough study on the thermal stability and fire behavior of polyethersulfone (PES) filled with 2 wt% nano-sized aluminum oxide hydroxide particles (boehmite). The nanocomposite was prepared through melt compounding technique in a co-rotating twin screw extruder. The obtained morphology of the composite was studied by scanning electron microscopy (SEM) coupled with elemental analysis, proving that an even distribution of sub-micron boehmite particles was obtained. PES shear modulus, measured by DMA, is increased by 30% in the boehmite nanocomposite. Thermal stability of the produced materials was studied through thermal gravimetric analysis (TGA), whereas the combustion behavior through cone calorimeter and vertical burning (UL-94) tests. Cone calorimeter results show that a significant overall flame retardant effect was observed due to the presence of boehmite nanoparticles, which could not be detected by UL-94 fire scenario where neat PES is already top ranked V0.  相似文献   

8.
Boehmite (AlOOH) nanoparticles have been synthesized in subcritical (300 bar, 350 °C) and supercritical (300 bar, 400 °C) water. The formation and growth of AlOOH nanoparticles were studied in situ by small‐ and wide‐angle X‐ray scattering (SAXS and WAXS) using 80 keV synchrotron radiation. The SAXS/WAXS data were measured simultaneously with a time resolution greater than 10 s and revealed the initial nucleation of amorphous particles takes place within 10 s with subsequent crystallization after 30 s. No diffraction signals were observed from Al(OH)3 within the time resolution of the experiment, which shows that the dehydration step of the reaction is fast and the hydrolysis step rate‐determining. The sizes of the crystalline particles were determined as a function of time. The overall size evolution patterns are similar in sub‐ and supercritical water, but the growth is faster and the final particle size larger under supercritical conditions. After approximately 5 min, the rate of particle growth decreases in both sub‐ and supercritical water. Heating of the boehmite nanoparticle suspension allowed an in situ X‐ray investigation of the phase transformation of boehmite to aluminium oxide. Under the wet conditions used in this work, the transition starts at 530 °C and gives a two‐phase product of hydrated and non‐hydrated aluminium oxide.  相似文献   

9.
垃圾焚烧飞灰颗粒的微观形态特征及能谱研究   总被引:10,自引:3,他引:10  
利用SEM/EDX,观察了垃圾焚烧飞灰颗粒的微观形态特征,探讨了其主要组成元素及其质量分数。实验结果表明,飞灰颗粒形态多样化,其中以不规则形状聚合体居多,球形体、絮状集合体相对较少,少数颗粒为棒状集合体。球形飞灰颗粒很少有重金属分布,不规则形状聚合体或絮状集合体的表面易分布重金属。从飞灰颗粒表面、内部组成元素的质量分数来看,Si、Ca、Al为主要元素。飞灰颗粒表面、内部有重金属Pb、Cu等分布,局部测定点其质量分数可高达16.2%和14.5%。  相似文献   

10.
The “fingerprinting” of a molecular structure obtained by micro-Raman spectroscopy (MRS) can be successfully complemented by means of X-ray spot analysis through the application of scanning electron microscopy equipped with an X-ray detector (SEM/EDX). The elemental composition revealed by SEM/EDX is essential for a correct interpretation of the collected Raman spectra. The results presented here illustrate how the two techniques can be combined to characterize geological samples, especially in the case of individual particles. The samples involved in the experiments were Zr- and Ti-bearing sand from South Africa (with major minerals such as zircon and rutile) and U mine tailings from Hungary (rich with feldspars, quartz and sulphate minerals). Mineral phases detected by MRS were identified according to their respective main Raman shifts, with a spatial resolution up to 1 μm, depending on the parameters set. Some unusual and sometimes inexplicable Raman activity was observed, which was ascribed to and rationalized by the presence of accompanying elements as detected with EDX. The relocation of a particle by means of the two instruments was facilitated with TEM grids. Although the limitations of the sequential use of SEM/EDX and MRS, such as different beam sizes, probing depth and surface topography, should be considered in their application to the analysis of individual geological particles, the two methods appeared to be complementary. Not only do they provide correlated chemical information about the sample, but also enable chemical characterization that would be otherwise incomplete when analyzed on a stand-alone basis.  相似文献   

11.
Fundamental understanding of aerosol formation and particle transport are important aspects of understanding and improving laser-ablation ICP–MS. To obtain more information about particles entering the ICP, laser aerosols generated under different ablation conditions were collected on membrane filters. The particles and agglomerates were then visualised using scanning electron microscope (SEM) imaging. To determine variations between different sample matrices, opaque (USGS BCR-2G) and transparent (NIST SRM 610) glass, CaF2, and brass (MBH B26) samples were ablated using two different laser wavelengths, 193 and 266 nm. This study showed that the condensed nano-particles (∼10 nm in diameter) formed by laser ablation reach the ICP as micron-sized agglomerates; this is apparent from filters which contain only a few well-separated particles and particle agglomerates. Ablation experiments on different metals and non-metals show that the structure of the agglomerates is matrix-dependent. Laser aerosols generated from silicates and metals form linear agglomerates whereas particle-agglomerates of ablated CaF2 have cotton-like structures. Amongst other conditions, this study shows that the absorption characteristics of the sample and the laser wavelength determine the production of micron-sized spherical particles formed by liquid droplet ejection.  相似文献   

12.
以粒径为100nm的硒球作模板,在室温下批量合成了粒径约110nm、壳厚约5 nm的铂空球.采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HR-TEM)、选区电子衍射(SAED)、X射线衍射(XRD)、能量色散X射线谱(EDX)等检测技术表征了其形貌与结构;以甲醇为探针分子研究了铂纳米空球修饰玻碳电极对甲醇电氧化的催化性能.结果表明,由铂原子簇团构筑的多孔铂空球粒径均匀、分散性好、结构稳定、比表面积大、传质性能好,是甲醇氧化的理想催化材料.循环伏安(CV)结果表明:当甲醇氧化的电流密度0.10 mA·cm-2,正扫时,铂纳米空球的氧化电位与实心铂纳米粒子及铂黑相比,分别负移了约110和64mV;负扫时,前者比后两者分别负移了约51与13 mV.经800圈循环伏安扫描后,正扫时,甲醇在铂纳米空球上氧化峰的电流密度为实心铂纳米粒子及铂黑上的13和15倍;负扫时,前者为后两者的19和38倍.表明铂纳米空球对甲醇氧化具有较好的催化活性和稳定性.  相似文献   

13.
In this work, Cu(In,Ga)Se(2) (CIGS) nanoparticles were synthesized using a wet chemical method. The method is based on a non-vacuum thermal process that does not use selenization. The effects of temperature, source materials, and growth conditions on the phase and particle size were investigated. X-ray diffraction results confirm the formation of a tetragonal CIGS structure as the main phase with the purity more than 99% obtained by energy-dispersive X-ray spectroscopy (EDX). The morphology and size of the samples were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Using these methods, 20-80nm particles were obtained. Through measurements of the absorption spectra of CIGS nanoparticles, the band gap of the synthesized material was determined to be about 1.44eV, which corresponds to an acceptable wavelength region for absorber layers in solar cells.  相似文献   

14.
CuBiSe2 (CBSe) thin film was prepared by vacuum evaporation. The deposited film was characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X‐ray (EDX), UV–visible specroscopy, and I–V analysis. XRD analysis indicates the formation of cubic CBSe thin film, and the corresponding EDX spectrum confirms the stoichiometry composition of CBSe. In the AFM images, the majority of the particles are granular, and the surface roughness is 8.86 nm. The optical absorption coefficient is >104 in the visible region and the bandgap energy is calculated to be 1.84 eV. The photosensitivity of the film is 181%.  相似文献   

15.
Polystyrene/nano-CdSe (PS/CdSe) core/shell microspheres were synthesized via in situ soap-free emulsion polymerization using various functional monomers such as 2-(dimethylamino)ethyl methacrylate, 1-vinylimidazole, 2-vinylpridine, and 4-vinylpridine. They were co-polymerized with styrene monomer and provided the location for coordinating with Cd2+ ions on the PS particle surfaces. Then, we used an alkaline selenium solution as a selenium source. Reaction of the alkaline selenium solution with the previous emulsion produced nanocrystalline CdSe onto the surface of PS particles at room temperature under atmospheric pressure. The different kinds of functional monomers and the amount of both Cd2+ ion and functional monomer were playing important roles to obtain stable and uniform morphologies of CdSe particles. Morphological observations were carried out by both scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Through the SEM and TEM microphotographs, we could confirm the formation of PS/nano-CdSe composite particles. Ultraviolet–visible absorption measurement indicated the quantum dot effect in the resulted PS/nano-CdSe core/shell microspheres.  相似文献   

16.
Individual particle analysis by means of an automated scanning electron microscope with an energy dispersive X-ray microanalysis system (SEM/EDX) is used for chemical classification and size determination of airborne particulate matter. Special attention is paid to the X-ray analysis of atmospheric soot particles. The preparation and use of standards, which is indispensable for obtaining good results are described and discussed in detail. The aerosol samples were collected on Nuclepore filters of two different pore sizes at a traffic island in Munich.  相似文献   

17.
Using scanning transmission electron microscopy we image ~4 nm platinum nanoparticles deposited on an insulating membrane, where the membrane is one of two electron-transparent windows separating an aqueous environment from the microscope's high vacuum. Upon receiving a relatively moderate dose of ~10(4) e/nm(2), initially immobile nanoparticles begin to move along trajectories that are directed radially outward from the center of the field of view. With larger dose rates the particle motion becomes increasingly dramatic. These observations demonstrate that, even under mild imaging conditions, the in situ electron microscopy of aqueous environments can produce electrophoretic charging effects that dominate the dynamics of nanoparticles under observation.  相似文献   

18.
By using a surface-modified templating method, Fe(2)O(3)@polypyrrole (PPy) core/shell spindles have been successfully prepared in this paper. The Fe(2)O(3) particles with spindle morphology were initially fabricated as core materials. After the PVP modification, the Fe(2)O(3) spindles were subsequently coated with a tunable thickness layer of PPy by in situ deposition of the conducting polymer from aqueous solution. Hollow PPy spindles were produced by dissolution of the Fe(2)O(3) core from the core/shell particles. High-temperature treatment under vacuum condition covert the hollow PPy spindles into carbon capsules by carbonization of the PPy shell. Transmission electron microscope (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) confirmed the formation of the Fe(2)O(3)@PPy core/shell particles, PPy and carbon capsules with spindle morphology.  相似文献   

19.
何正文  江奇  杨荣  亓鹏  赵斐  袁华  赵勇 《物理化学学报》2010,26(5):1214-1218
利用直流电电化学沉积法将生长碳纳米管(CNT)的催化剂镍均匀地附着在石墨电极(GE)表面,再通过化学气相沉积法制备得到原位生长碳纳米管化学修饰电极(GSCNT-CME).电化学沉积的金属镍和所制备的修饰电极分别用光学显微镜、扫描电子显微镜(SEM)和电子能谱(EDX)进行表征,所得修饰电极的电化学性能用[Fe(CN)6]3-/[Fe(CN)6]4-溶液进行表征.结果表明:经直流电电化学沉积,可以在石墨电极表面沉积一层致密的金属镍,能生长出管径均匀的碳纳米管,所制得的修饰电极具有良好的电化学响应灵敏性和准确性,可在电化学检测领域发挥重要的应用.  相似文献   

20.
The evaporation of methanol from needle-shaped particles of cellobiose octaacetate (COA) has been studied directly in a jacketed vacuum drier using in situ measurements by Raman spectrometry. A design of experiments (DoE) approach was used to investigate the effects of three parameters (method of agitation, % solvent loss on drying and jacket temperature), with the intention of minimising the drying time and extent of particle attrition. Drying curves based on Raman signals for methanol and COA in the spectra of the wet particles indicated the end of drying and revealed three stages in the drying process that could be used to monitor the progress of solvent removal in real time. Off-line particle size measurements based on laser diffraction were made to obtain information on the extent of attrition, to compare with the trends revealed by the Raman drying curves. The study demonstrated that non-invasive Raman spectrometry can be used to study the progress of drying during agitation of particles in a vacuum drier, allowing optimisation of operating conditions to minimise attrition and reduce drying times. Although a correlation between particle size and off-line Raman measurements of COA was demonstrated, it was not possible to derive equivalent information from the in situ Raman spectra owing to the greater effects of particle motion or bulk density variations of the particles in the drier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号