首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polysiloxane-based alicyclic episulfide resin (PSCER) was synthesized through substitution of oxygen atoms in 1,3-bis[2-(3{7-oxabicyclo[4,1,0]hepyl})ethyl]-tetramethyldisiloxane with sulfur atoms using potassium thiocyanate (KSCN) as the reagent. The product was purified by column chromatography, and the by-products were isolated. It was found by 1H-NMR and 13C-NMR that the by-products were cycloolefins formed by desulfurization of the episulfide groups. PSCER was unstable; desulfurization took place easily, especially at high temperatures. The PSCER resin could not be cured with methylhexahydrophthalic anhydride (MeHPPA). When m-phenylenediamine or isophorondiamine was used as curing agent, PSCER showed a higher reactivity compared with the parent epoxide. However, the reactivity of the alicyclic episulfide was much lower than the polysiloxane based aliphatic episulfide for the steric hindrance of the six member ring. Desulfurization took place upon curing of the alicyclic episulfide resin, therefore the cured resin showed poor mechanical properties. Thermal stability of cured PSCER resin was also poor on account of low bonding energy of C-S and crosslinking density.  相似文献   

2.
In this work, a novel amine-terminated curing agent for epoxy resin based on hexachlorocyclotriphosphazene (HCCP) was synthesized through two steps of nucleophilic substitution reactions by phenol and 4-aminophenol. Its chemical structure was characterized by 1H-NMR, Fourier transform infrared spectroscopy (FTIR) and mass spectrometry (MS). This curing agent was liquid at room temperature which made it easy to disperse in the epoxy resin. The rheological test showed the viscosity of the pre-polymer fluid decreased as the proportion of the curing agent increased so it improved the process performance. The curing reaction was studied by differential scanning calorimeter (DSC). The novel curing agent had a wider range of curing temperature and relatively lower curing temperature in comparison with the widely-using curing agent 4,4′-Diaminodiphenylmethane (DDM). The wider range of curing temperature helped lower the heat accumulation which was an important factor in curing process.  相似文献   

3.
A novel type of hyperbranched (3-hydroxyphenyl) phosphate (HHPP) with high functionality as a curing agent of epoxy resins was synthesized and characterized by FTIR, 1H NMR and vapor phase osmometry (VPO). The cured epoxy resin with HHPP possessed improved glass transition temperature. The thermostability and flame retardancy of O-cresol novolac epoxy resin cured with different contents of HHPP were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI) and cone calorimetry. The obtained results show that the samples containing a higher percentage of HHPP exhibit relatively lower thermostability at lower temperature while higher thermostability at elevated temperature and more char was formed compared with those containing a lower percentage of HHPP. The LOI value increased from 22.0 to 30.0 when HHPP, instead of 1,3-dihydroxybenzene, was used as a curing agent. The 25 wt% addition of HHPP in the curing agent complex effectively decreased the heat release rate and improved the char yield to the content nearly similar as those of the epoxy resin cured with pure HHPP.  相似文献   

4.
The cyanate ester (CE) and epoxy (EP) resins were cured together at various mass compositions. The curing behavior of CE and CE/EP systems was studied by means of differential scanning calorimetry (DSC) in non-isothermal conditions. The DSC measurements indicated that the curing reactions were dependent on the stoichiometric ratio of the mixtures and showed the dilution effect of the EP resin in the cyclotrimerization of the catalyzed CE resin. The CE and CE/EP (70/30) systems were modified using reactive liquid butadiene-acrylonitrile copolymer (ETBN) and polysiloxane core?Cshell (PS) elastomer. The influence of ETBN and PS on the curing process and glass transition temperature (T g) of CE/EP systems was determined. The impact resistance characteristics of the completely cured systems indicated the influence of the modifiers and the EP content in the mixtures on its impact resistance.  相似文献   

5.
Modification of epoxy resin using reactive liquid (ATBN) rubber   总被引:5,自引:0,他引:5  
Epoxy resins are widely utilised as high performance thermosetting resins for many industrial applications but unfortunately some are characterised by a relatively low toughness. In this respect, many efforts have been made to improve the toughness of cured epoxy resins by the introduction of rigid particles, reactive rubbers, interpenetrating polymer networks and engineering thermoplastics within the matrix.In the present work liquid amine-terminated butadiene acrylonitrile (ATBN) copolymers containing 16% acrylonitrile is added at different contents to improve the toughness of diglycidyl ether of bisphenol A epoxy resin using polyaminoimidazoline as a curing agent. The chemical reactions suspected to take place during the modification of the epoxy resin were monitored and evidenced using a Fourier transform infrared. The glass transition temperature (Tg) was measured using a differential scanning calorimeter. The mechanical behaviour of the modified epoxy resin was evaluated in terms of Izod impact strength (IS), critical stress intensity factor, and tensile properties at different modifier contents. A scanning electron microscope (SEM) was used to elucidate the mechanisms of deformation and toughening in addition to other morphological features. Finally, the adhesive properties of the modified epoxy resin were measured in terms of tensile shear strength (TSS).When modifying epoxy resin with liquid rubber (ATBN), all reactivity characteristics (gel time and temperature, cure time and exotherm peak) decreased. The infrared analysis evidenced the occurrence of a chemical reaction between the two components. Addition of ATBN led to a decrease in either the glass transition temperature and stress at break accompanied with an increase in elongation at break and the appearance of some yielding. As expected, the tensile modulus decreased slightly from 1.85 to about 1.34 GPa with increasing ATBN content; whereas a 3-fold increase in Izod IS was obtained by just adding 12.5 phr ATBN compared to the unfilled resin. It is obvious that upon addition of ATBN, the Izod IS increased drastically from 0.85 to 2.86 kJ/m2 and from 4.19 to 14.26 kJ/m2 for notched and unnotched specimens respectively while KIC varies from 0.91 to 1.49 MPa m1/2 (1.5-fold increase). Concerning the adhesive properties, the TSS increased from 9.14 to 15.96 MPa just by adding 5 phr ATBN. Finally SEM analysis results suggest rubber particles cavitation and localised plastic shear yielding induced by the presence of the dispersed rubber particles within the epoxy matrix as the prevailing toughening mechanism.  相似文献   

6.
Terephthaloyl chloride was reacted with 4‐hydroxy benzoic acid to get terephthaloylbis(4‐oxybenzoic) acid, which was characterized and further reacted with epoxy resin [diglycidyl ether of bisphenol A (DGEBA)] to get a liquid‐crystalline epoxy resin (LCEP). This LCEP was characterized by Fourier transform infrared spectrometry, 1H and 13C NMR spectroscopy, differential scanning calorimetry (DSC), and polarized optical microscopy (POM). LCEP was then blended in various compositions with DGEBA and cured with a room temperature curing hardener. The cured blends were characterized by DSC and dynamic mechanical analysis (DMA) for their thermal and viscoelastic properties. The cured blends exhibited higher storage moduli and lower glass‐transition temperatures (tan δmax, from DMA) as compared with that of the pure DGEBA network. The formation of a smectic liquid‐crystalline phase was observed by POM during the curing of LCEP and DGEBA/LCEP blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3375–3383, 2003  相似文献   

7.
A group of cyanoethylated amine (CEA) has been synthesized by carefully reacting triethylenetetramine with varying proportions of acrylonitrile. Such CEAs were utilized as hardener for the curing of epoxy resin. The effect of cyanoethylation of amine on their curing reaction with epoxy resin has been studied by differential scanning calorimeter (DSC). The processing temperature for the fabrication of composite is estimated from the DSC analysis with an approach to satisfy the logical selection of temperature for application of pressure during processing of a composite structure. The exotherm of such curing reaction (?H ex) and the degree of cyanoethylation (CEt) of the amine follow the relation ?H ex ?=?(324?C68.40?CEt)?J?g?1.  相似文献   

8.
A novel toughened cyanate ester (CE) resin with good dielectric properties and thermal stability was developed by copolymerizing 2,2′‐bis(4‐cyanatophenyl)iso‐propylidene (BCE) with a combined modifier (HBPSiEP) made up of hyperbranched polysiloxane (HBPSi) and epoxy (EP) resin. HBPSi was synthesized through the hydrolysis of 3‐(trimethoxysilyl)propyl methacrylate. The effect of differing stoichiometries of HBPSiEP on the curing characteristics and performance of BCE resin is discussed. Results show that the incorporation of HBPSiEP can not only effectively promote the curing reaction of BCE, but can also significantly improve the toughness of the cured BCE resin. In addition, the toughening effect of HBPSiEP is greater than single EP resin. For example, the impact strength of modified BCE resin with 30 wt% of HBPSiEP is 23.3 KJ/m2, which is more than 2.5 times of that of pure BCE resin, while the maximum impact strength of EP/BCE resin is about 2 times of pure BCE resin. It is worthy to note that HBPSiEP/BCE resins also exhibit improved thermal stability, dielectric properties, and flame retardancy, suggesting that the novel toughened CE resins have great potentiality to be used as a matrix for advanced functional composites or electronic packing resins. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A series of new modified epoxy resin (EP) cured products were prepared from epoxidized soybean oil and commercial epoxy resin, with methyl nadic anhydride as curing agent and 1-methylimidazole as promoting agent. The thermal properties of the resins were characterized by DMA and TG; DSC was used to determine the curing process. Fourier transform infrared spectroscopy was utilized to investigate their molecular structures and scanning electron microscopy was used to observe the micro morphology of their impact fracture surfaces. Tensile and impact testing was employed to characterize the mechanical properties of the cured products. The combination of commercial EP with 20 wt% ESO resulted in a bioresin with the optimum set of properties: 130.5 °C T g, 396.9 °C T 50 %, 74.89 MPa tensile strength, and 48.86 kJ m?2 impact resistance.  相似文献   

10.
Epoxy resins are important thermosetting resins widely employed in industrial fields. Although the epoxy–imidazole curing system has attracted attention because of its reactivity, solidification of a liquid epoxy resin containing imidazoles proceeds gradually even at room temperature. This makes it difficult to use them for one‐component epoxy resin materials. Though powder‐type latent curing agents have been used for one‐component epoxy resin materials, they are difficult to apply for fabrication of fine industrial products due to their poor miscibility. To overcome this situation and to improve the shelf life of epoxy–imidazole compositions, we have developed a liquid‐type thermal latent curing agent 1 , generating an imidazole with a thermal trigger via a retro‐Michael addition reaction. The latent curing agent 1 has superior miscibility toward epoxy resins; in addition, it was confirmed that the epoxy resin composition has both high reactivity at 150 °C, and long‐term storage stability at room temperature. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2680–2688  相似文献   

11.
The effects of the hyperbranched polyester with hydroxyl end groups (HBPE‐OH) on the curing behavior and toughening performance of a commercial epoxy resin (diglycidyl ether of bisphenol A, DGEBA) were presented. The addition of HBPE‐OH into DGEBA strongly increased its curing rate and conversion of epoxide group due to the catalytic effect of hydroxyl groups in HBPE‐OH and the low viscosity of the blend at curing temperature. The improvements on impact strength and critical stress intensity factor (or fracture toughness, K1c) were observed with adding HBPE‐OH. The impact strength was 8.04 kJ m?1 when HBPE‐OH reached 15 wt% and the K1c value was approximately two times the value of pure epoxy resin when HBPE‐OH content was 20 wt%. The morphology of the blends was also investigated, which indicated that HBPE‐OH particles, as a second phase in the epoxy matrix, combined with each other as the concentration of HBPE‐OH increased. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
A novel tri-functional cycloaliphatic epoxy resin was synthesized starting from dicyclopentadiene. The chemical structures of the resultant epoxy resin and its precursor were characterized with FTIR spectroscopy, EEW, 1H NMR and Mass spectrographic analyses. The thermal and mechanical properties of the resulting polymer were evaluated with differential scanning calorimeter (DSC), thermo-gravimetric and thermal mechanical analysis. Compared to that of the common cycloaliphatic epoxy resin ERL-4221, the cured polymer of the novel epoxy resin exhibited lower thermal degradation temperature with much higher char yield and similar thermal expansion coefficient. These excellent overall performances make it a promising packaging material.  相似文献   

13.
《先进技术聚合物》2018,29(1):565-574
In the current work, renewable resourced toughened epoxy blend has been developed using epoxidized linseed oil (ELO) and bio‐based crosslinker. Epoxidation of linseed oil was confirmed through FTIR and 1H NMR spectra. The ELO bio‐resin was blended at different compositions (10, 20, and 30 phr) with a petroleum‐based epoxy (DGEBA) as reactive diluent to reduce the viscosity for better processibility and cured with cardanol‐derived phenalkamine to overcome the brittleness. The flow behavior of the neat epoxy and modified bio‐epoxy resin blend systems was analyzed by Cross model at low and high shear rates. The tensile and impact behavior studies revealed that the toughened bio‐epoxy blend with 20 to 30 phr of ELO showed moderate stiffness with much higher elongation at break 7% to 13%. Incorporation of higher amount of ELO (20 to 30 phr) increases enthalpy of curing without affecting peak temperature of curing. The thermal degradation behavior of the ELO based blends exhibits similar trend as neat epoxy. The higher intensity or broadened loss tangent curve of bio‐epoxy blends revealed higher damping ability. FE‐SEM analysis showed a rough and rippled surface of bio‐based epoxy blends ensuring effective toughening. Reduced viscosity of resin due to maximum possible incorporation of bio‐resin and use of phenalkamine as curing agent leads to an eco‐friendly toughened epoxy and can be useful for specific coating and structural application.  相似文献   

14.
A new epoxy resin (Bis-ENA) containing naphthalene structure linked with a 1,4-bis(isopropylidene)phenylene was synthesized and was confirmed by elemental analysis, infrared spectroscopy, and 1H nuclear magnetic resonance spectroscopy. To estimate the effect of naphthalene moiety on the cured polymer, an epoxy resin (Bis-EP) having phenyl moiety was synthesized, and curing behaviors of Bis-ENA and Bis-EP with phenol novolac were evaluated by differential scanning calorimetry. The incorporation of naphthalene structure into the resin backbone increased the curing temperature and reduced the curing reactivity. Thermal properties of the cured polymers obtained from Bis-ENA and Bis-EP with phenol novolac were examined by thermomechanical analysis and dynamic mechanical analysis. Mechanical properties and moisture resistance were evaluated by flexural strength, flexural modulus, and moisture absorption measurements. The cured polymer obtained from Bis-ENA showed higher glass transition temperature, higher flexural modulus, lower thermal expansion, and lower moisture absorption than that from Bis-EP. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3063–3069, 1999  相似文献   

15.
A diamine‐based benzoxazine monomer (Bz) and a liquid crystalline epoxy monomer (LCE) are synthesized, respectively. Subsequently, a benzoxazine‐epoxy interpenetrating polymer network (PBEI) containing liquid crystalline structures is obtained by sequential curing of the LCE and the Bz in the presence of imidazole. The results show that the preferential curing of LCE plays a key role in the formation mechanism of liquid crystalline phase. Due to the introduction of liquid crystalline structures, the thermal conductivity of PBEI increases with increasing content of LCE. When the content of LCE is 80 wt %, the thermal conductivity reaches 0.32 W m?1 K?1. Additionally, the heat‐resistance of PBEI is superior to liquid crystalline epoxy resin. Among them, PBEI55 containing equal weight of Bz and LCE has better comprehensive performance. Its thermal conductivity, glass transition temperature, and the 5 % weight loss temperature are 0.28 W m?1 K?1, 160 °C, and 339 °C, respectively. By introducing boron nitride (BN) fillers into PBEI55, a composite of PBEI/BN with the highest thermal conductivity of 3.00 W m?1 K?1 is obtained. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 1813–1821  相似文献   

16.
A phosphorus-containing bio-based epoxy resin (EADI) was synthesized from itaconic acid (IA) and 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO). As a matrix, its cured epoxy network with methyl hexahydrophthalic anhydride (MHHPA) as the curing agent showed comparable glass-transition temperature and mechanical properties to diglycidyl ether in a bisphenol A (DGEBA) system as well as good flame retardancy with UL94 V-0 grade during a vertical burning test. As a reactive flame retardant, its flame-resistant effect on DGEBA/MHHPA system as well as its influence on the curing behavior and the thermal and mechanical properties of the modified epoxy resin were investigated. Results showed that after the introduction of EADI, not only were the flame retardancy determined by vertical burning test, LOI measurement, and thermogravimetric analysis significantly improved, but also the curing reactivity, glass transition temperature (T g), initial degradation temperature for 5% weight loss (T d(5%)), and flexural modulus of the cured system improved as well. EADI has great potential to be used as a green flame retardant in epoxy resin systems.  相似文献   

17.
The current research work presents a novel nonionic curing agent (AEDA) synthesized by utilizing ethylene glycol diglycidyl ether (EGDE), 3,4-dimethoxyaniline (DI), and triethylenetetramine (TETA). Infrared spectroscopy and nuclear magnetic resonance spectroscopy were used to characterize the structure of AEDA curing agent. Non-isothermal scanning calorimetry was used to determine the activation energy and curing conditions of epoxy resin in the curing process. An impact testing machine, a tensile testing machine and a scanning electron microscope (SEM) were used to analyze the impact strength, tensile strength, bending strength, and micromorphology of the AEDA/E-51 system with different mass ratios. The results show that AEDA is an effective high-temperature curing agent. For the AEDA/E-51 system with the optimal mass ratio of 10:100, the best curing temperature is 92.15°C, and the post-curing temperature is 135.65°C. Furthermore, the apparent activation energy (Ea) of 1670 J/mol, the pre-exponential factor (A) of 3.7 × 10?4, and the reaction series (n) value of 0.76 are obtained for the AEDA/E-51 system. The impact strength of AEDA/E-51 epoxy resin polymer is 7.82 kJ/m2, tensile strength is 14.2 MPa, and bending strength is 18.92 MPa. The micromorphological results of the AEDA/E-51 system are consistent with the results of DSC test and mechanical properties test. Hence, this study provides theoretical support for the practical applications of AEDA as curing agent.  相似文献   

18.
Dynamic mechanical analysis was conducted on specimens prepared from cyanate ester (CE) and epoxy (EP) resins cured together at various mass compositions. Increase of amount of epoxy resin in composition was shown to have a disadvantageous effect on glass transition temperature (T g). It was shown that post-curing procedure was needed to produce a polymer matrix with a single glass transition relaxation, but increase in post-cure temperature up to 250 °C resulted in slight reduction in T g for epoxy/cyanate copolymers. TG results proved that the presence of epoxy resin reduces thermal stability of the cyanate/epoxy materials. The neat CE and EP/CE systems containing 30 wt% of epoxy resin were modified using epoxy-terminated butadiene–acrylonitrile rubber (ETBN) and polysiloxane core–shell elastomer (PS). The scanning electron microscopy (SEM) results showed the existence of second phase of ETBN and PS modifiers. Only in the case of EP/CE composition modified with ETBN, well-dispersed second phase domains were observed. Analysis of SEM images for other CE- and EP/CE-modified systems revealed the formation of spherical aggregates.  相似文献   

19.
Networked polymers that had poly(ethylene glycol) (PEG) chains and lithium sulfonylimide salt structures were prepared by curing a mixture of poly(ethylene glycol) diglycidyl ether and lithium 3‐glycidyloxypropanesulfonyl‐trifluoromethanesulfonylimide with poly(ethylene glycol) bis(3‐aminopropyl) terminated. The obtained flexible self‐standing networked polymer films showed high thermal and mechanical stability with relatively high ionic conductivity. The room temperature ionic conductivity under a dry condition was in the range of 10?5 ~ 10?4 S m?1, which is one order of magnitude higher than the corresponding networked polymers having lithium sulfonate salt structures (10?6 ~ 10?5 S m?1). The film sample became swollen by immersing in propylene carbonate (PC) or PC solution of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The sample swollen in PC showed higher ionic conductivity (7.2 × 10?3 S m?1 at room temperature), and the sample swollen in 1.0 M LiTFSI/PC showed much higher ionic conductivity (8.2 × 10?1 S m?1 at room temperature). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
Isothermal Differential Scanning Calorimetry (DSC) was used to study the curing behavior of epoxy prepreg SPX 8800 system, which contains DGEBA/DICY/Diuron (Diglycidyl ether of bisphenol A/Dicyandiamide/Diuron) reinforced by three layers of glass fibre. The rate curves from the DSC study agreed well with those obtained from the isothermal FT Near Infrared (FTNIR) study and similar activation energy was obtained in the range of 92.6 to 87.7 kJ/mol up to 50% total conversion. Modelling of the whole DSC trace with empirical equation dx/dt=kxm(A-x)n gave relatively good fitting of the experimental curves (the error is lower than 15%.) in the whole studied cure temperature range (75-110°C) and no significant difference in cure kinetics was observed for both epoxy prepreg and neat resin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号