首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The optical and electronic properties of molybdenum (Mo) doped rutile TiO2 prepared by the mechanochemical method were studied both experimentally and using density functional theory (DFT). The synthesized nanoparticles were characterized by XRD, TEM, EDS-MAP, and XPS. The XRD results showed the successful incorporation of Mo in the rutile crystal lattice. High-resolution TEM images illustrated a decreasing trend in the (110) d-spacing for samples doped up to 3 at%. The shift toward higher binding energies in the XPS spectra was due to the higher oxidization tendencies of Mo5+ and Mo6+ substituted in Ti4+ sites. The optical behavior of samples was examined by UV–Vis and photoluminescence spectroscopy. The bandgap energy value of rutile was reduced from 3.0 eV to 2.4 eV by 2 at% Mo doping. The DFT calculations showed a reduction of bandgap energy value of rutile to 2.35 eV with 2 at% Mo, which is in harmony with the experimental results. The creation of energy states below the conduction band because of Mo doping was identified as the reason for reducing the bandgap energy and photoluminescence emission of rutile.  相似文献   

2.
采用基于密度泛函理论的第一性原理平面波超软赝势计算方法, 研究了In、Sc p型掺杂对SrTiO3母体化合物稳定性、电子结构和光学性质的影响. 计算结果表明:掺杂后, SrIn0.125Ti0.875O3和SrSc0.125Ti0.875O3的稳定性降低, 体系显示p型简并半导体特征, 掺杂仅引起杂质原子近邻区域的几何结构发生变化. 同时, SrIn0.125Ti0.875O3和SrSc0.125Ti0.875O3体系的光学带隙分别展宽0.35、0.30 eV, 光学吸收边发生蓝移, 在1.25-2.00 eV的能量区间出现新的吸收峰, 该吸收峰与体系Drude型自由载流子的激发相关. 此外, SrIn0.125Ti0.875O3和SrSc0.125Ti0.875O3体系的可见光透过率有了明显的提高, 在350-625 nm波长范围透过率高于85%. 掺杂原子在费米能级处低的电子态密度限制了跃迁概率和光吸收. 大的禁带宽度、小的跃迁概率和弱的光吸收是SrIn0.125Ti0.875O3和SrSc0.125Ti0.875O3体系具有较高光学透明度的原因.  相似文献   

3.
The electronic structure of the interface between ferromagnetic cobalt and the organic semiconductors copper- (CuPc) and iron-phthalocyanine (FePc) was investigated by means of photoemission spectroscopy (UPS, IPES, and XPS). These metal-phthalocyanine (MePc) molecules have an open shell structure and are known to show promising properties for their use in organic spintronics. In spintronic devices, the interface between ferromagnetic electrode and the organic layer determines the spin injection properties and is hence important for the quality of, e.g., a possible spin-valve device. For this purpose, cobalt was deposited onto the MePcs, such as in devices with ferromagnetic top contacts. The reported investigations reveal a diffusion of cobalt into the organic layers and chemical reactions at the interface.  相似文献   

4.
An electrical and optical energy gaps separation strategy is put forward for the design of organic wide bandgap semiconductors. This new principle could achieve optimization of wide bandgap (both high singlet and triplet energies) and favorable carrier injection energy levels simultaneously.  相似文献   

5.
The polyphosphazene backbone provides a versatile platform to explore numerous synthesis and structure–property relationships for many technological applications. In this study, a new class of polyphosphazene semiconducting materials was synthesized via macromolecular substitution, which integrates a  PN backbone with thiophene-based side groups. The synthesized thiophene-based polymers were subjected to chemical oxidation (oxidative coupling) to optimize their optoelectronic properties through side-chain chemistry. Both the spectroscopic and electronic analyses revealed that optical and electronic properties, as well as glass transition temperatures could be modulated by chemical oxidation of the polymers. The suitability of the polymers as potential semiconductors was further evaluated using their steady-state fluorescence quenching behavior in the presence of four different dopants (PC70BM, PC60BM, F4TCNQ, and TCNQ). It was found that the addition of dopant as a quencher to the polymer solutions does not form a complex in the ground state, and its excited state shows an efficient decrease in fluorescence intensity without altering the shape and peak position of the fluorescence band. The overall results demonstrate that the utilization of chemical oxidation via side-chain chemistry of polyphosphazenes offers an adaptable toolbox that can be used to make new and potentially useful polymeric semiconductors for applications in organic electronics.  相似文献   

6.
A new family of naphthalimide‐fused thienopyrazine derivatives for ambipolar charge transport in organic field‐effect transistors is presented. Their electronic and molecular structures were elucidated through optical and vibrational spectroscopy aided by DFT calculations. The results indicate that these compounds have completely planar molecular skeletons which promote good film crystallinity and low reorganization energies for both electron and hole transport. Their performance in organic field‐effect transistors is compared with twisted and planar naphthaleneamidine monoimide‐fused terthiophenes in order to understand the origin of ambipolarity in this new series of molecular semiconductors.  相似文献   

7.
Semi-empirical AM1 and ZINDO/S, as well as density function theory (DFT) method B3LYP/6-31G(d) quantum chemical calculations were carried out to study the electronic structures and optical properties of poly(p-phenylene vinylene) derivatives (PPVs) with 10 and 11 phenylene rings in the backbone. The calculations suggest that the assembly of alternate incorporation of CN and alkoxy substituted phenylene rings in the PPV backbone could be a good way to construct organic semiconductors with low HOMO/LUMO energy band-gaps. The effect of the end-group on the electronic structures and optical properties of the conjugated polymer was investigated by the calculated UV-Vis and UPS spectra. It was demonstrated that the aldehyde and phosphate end-groups have limited effects on the photophysical properties in the UV-visible range.  相似文献   

8.
In this study, structural, electronic, optical and thermoelectric aspects of Zinc Sulfide (ZnS) and Zinc Telluride (ZnTe) have been explored in detail. These calculations have been done by utilizing FP-LAPW method via Density Functional Theory (DFT). In order to attain accurate band gaps, opto-electronic properties are evaluated with modified Becke Johnson potential (mBJ). From band structure plots, both ZnS and ZnTe reveals direct (Γv–ΓC) band gap semiconductors in nature with bandgap value equal to 3.5 and 2.3 eV while in Density Of States (DOS) major influence is observed due to p states of S/Te and d state of Zn. Prominent variation of optical responses such as high values of imaginary dielectric constants 𝜀1 (ω) and n (ω) refractive index suggests that ZnS and ZnTe are applicant materials for future photonics and microelectronic devices. The thermoelectric aspects were explored by Boltz Trap code to determine electrical and thermal conductivities, Seebeck coefficients, power factors and figure of merit. The figure of merits is closer to 1 while compared with p-type ZnS and ZnTe, n-type ZnS and ZnTe has good thermoelectric properties, which are attributed to low thermal conductivity of the hole and larger effective mass. The goal of this research is to investigate not only the detailed physical aspects but also to provide an overview of its future applications in optoelectronics, displays, sensors and microelectronic industry.  相似文献   

9.
《印度化学会志》2021,98(3):100032
The optimized molecular structures, harmonic vibrational wavenumbers and corresponding vibrational assignments, frontier molecular orbitals and UV data of 7,7,8,8-tetracyanoquinodimethane, 2,5-difluoro-7,7,8,8-tetracyanoquinodimethane and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane were computed using quantum mechanical code. Calculations were carried out at Becke-3-Lee-Yang-Parr (B3LYP) functional with density functional theory (DFT) and time-dependent density functional theory (TD-DFT) using the 6–311++G (d,p) basis set. The theoretical results were successfully compared with some of the available experimental data. The influence of fluorine on the structural, vibrational and electronic properties were investigated. The addition of fluorine reduces both the electrical and optical band gaps. The findings of this research can be useful for analogs of the molecules studied which have potential applications in the design of organic semiconductors for electronic devise applications.  相似文献   

10.
We have characterized the terahertz (THz) vibrational spectroscopy of organic polycrystalline thin films using the new experimental technique of waveguide terahertz time domain spectroscopy (waveguide THz-TDS). The organic materials used in this study are tetracyanoquinodimethane (TCNQ) and 1,3-dicyanobenzene (13DCB). For each material, a thin film is cast onto one of the inner surfaces of a metal parallel plate waveguide (PPWG), followed by measurement of the low-frequency vibrational spectrum using waveguide THz-TDS. The vibrational spectra of the waveguide films are compared to corresponding vibrational spectra of standard pellet samples made by dispersing the organic solid in transparent polyethylene. We show how the waveguide films produce significantly narrower THz vibrational line shapes and reveal additional spectral lines that are obscured by inhomogeneous broadening effects in the pellet samples. When TCNQ waveguide films are cooled to 77 K, vibrational line widths as sharp as 25-30 gigahertz (0.83-1.0 cm(-1)) at the full width at half-maximum are observed, which are among the narrowest far-infrared line widths measured for this material. The origin of the line-narrowing effect for the waveguide films is the suppression of inhomogeneous broadening due to the planar ordering of the film on the waveguide surface. The TCNQ waveguide films are further characterized using optical microscopic evaluation to understand how film morphology affects the THz vibrational spectrum. X-ray diffraction is used to determine the orientation of the polycrystalline TCNQ films on the PPWG surface and to qualitatively explain the different vibrational line strengths observed for the ordered waveguide film relative to the random pellet.  相似文献   

11.
合成并表征了一种新的离子对化合物[4-NH2-Py][TCNQ](其中4-NH2-Py+是4-氨基吡啶阳离子,TCNQ-为7,7,8,8-四氰基对苯二醌二甲烷自由基阴离子)。在该离子对化合物晶体中,2个TCNQ-离子形成了面对面堆积的二聚体;阴离子中的氰基分别和阳离子上的氨基、吡啶质子化氮原子之间存在非常强的分子间氢键。通过氢键作用,相邻的TCNQ-二聚体被阳离子连成三维氢键网络。变温磁化率测量表明,在2~400 K温度范围内,该离子对化合物表现为抗磁性。在密度泛函理论框架下,用对称性破损方法计算了化合物晶体中π二聚体内以及通过氢键连接的相邻的TCNQ-离子之间的磁交换常数,发现π二聚体内存在非常强的反铁磁交换作用,与之相比,通过氢键连接的TCNQ-离子之间的磁交换作用可以忽略。π二聚体内强反铁磁交换作用(J/kB≈1805 K)导致了该化合物基本表现为抗磁性。  相似文献   

12.
A semiempirical nearest‐neighbor tight‐binding approach, that reproduces the indirect band gaps of elemental semiconductors, has been applied to study the electronic and optical properties of Si and Ge nanowires (NWs). The calculations show that Si‐NWs keep the indirect bandgap whereas Ge‐NWs changes into the direct bandgap when the wire cross section becomes smaller. Also, the band gap enhancement of Si‐NWs showing to quantum confinement effects is generally larger than that of similar‐sized Ge‐NWs, confirming the larger quantum confinement effects in Si than in Ge when they are confined in two dimensions. Finally, the dependence of the imaginary part of the dielectric function on the quantum confinement within two different schemes: intra‐atomic and interatomic optical matrix elements are applied. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110:2448–2454, 2010  相似文献   

13.
A new series of 2,1,3‐benzothiadiazole (BT) acceptors with different conjugated aryl‐vinylene side chains have been designed and used to build efficient low‐bandgap (LBG) photovoltaic copolymers. Based on benzo[1,2‐b:3,4‐b′]dithiophene and the resulting new BT derivatives, three two‐dimensional (2D)‐like donor (D)–acceptor (A) conjugated copolymers have been synthesised by Stille coupling polymerisation. These copolymers were characterised by NMR spectroscopy, gel‐permeation chromatography, thermogravimetric analysis and differential scanning calorimetry. UV/Vis absorption and cyclic voltammetry measurements indicated that their optical and electrochemical properties can be facilely modified by changing the structures of the conjugated aryl‐vinylene side chains. The copolymer with phenyl‐vinylene side chains exhibited the best light harvesting and smallest bandgap of the three copolymers. The basic electronic structures of D–A model compounds of these copolymers were also studied by DFT calculations at the B3LYP/6‐31G* level of theory. Polymer solar cells (PSCs) with a typical structure of indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene) (PEDOT):poly(styrenesulfonate) (PSS)/copolymer:[6,6]‐phenyl‐C61(C71)‐butyric acid‐methyl ester (PCBM)/calcium (Ca)/aluminum (Al) were fabricated and measured under the illumination of AM1.5G at 100 mW cm?2. The results showed that the device based on the copolymer with phenyl‐vinylene side chains had the highest efficiency of 2.17 % with PC71BM as acceptor. The results presented herein indicate that all the prepared copolymers are promising candidates for roll‐to‐roll manufacturing of efficient PSCs. Suitable electronic, optical and photovoltaic properties of BT‐based copolymers can also be achieved by fine‐tuning the structures of the aryl‐vinylene side chains for photovoltaic application.  相似文献   

14.
The electrochemical redox behavior of immobilized chromium, manganese, iron, cobalt, and nickel protoporphyrins IX has been investigated over the pH 0-14 range. In the investigated potential domain the metalloporphyrins were observed in four different oxidation states (M(I), M(II), M(III) and M(IV)). The metalloporphyrins differ in the potentials at which the redox transitions occur, but the observed pH dependence of the redox transitions was similar for the different metalloporphyrins and revealed that the M(II)/M(III) and M(III)/M(IV) transitions were accompanied by a hydroxide transfer at high pH. The fact that the metalloporphyrins are immobilized on graphite does not seem to have a large influence on their redox behavior, as can be deduced from the comparable behavior of immobilized metalloporphyrins on gold and of watersoluble metalloporphyrins in solution. We also performed density functional theory (DFT) calculations on the metalloporphyrins in different oxidation states. The geometries and spin states predicted by these calculations agree well with experimentally determined values; the calculations were also able to predict the electrochemical potentials of the [M(II)]/[M(III)-OH] redox transition to within about 300 mV.  相似文献   

15.
A new series of 2,1,3-benzothiadiazole (BT) acceptors with different conjugated aryl-vinylene side chains have been designed and used to build efficient low-bandgap (LBG) photovoltaic copolymers. Based on benzo[1,2-b:3,4-b']dithiophene and the resulting new BT derivatives, three two-dimensional (2D)-like donor (D)-acceptor (A) conjugated copolymers have been synthesised by Stille coupling polymerisation. These copolymers were characterised by NMR spectroscopy, gel-permeation chromatography, thermogravimetric analysis and differential scanning calorimetry. UV/Vis absorption and cyclic voltammetry measurements indicated that their optical and electrochemical properties can be facilely modified by changing the structures of the conjugated aryl-vinylene side chains. The copolymer with phenyl-vinylene side chains exhibited the best light harvesting and smallest bandgap of the three copolymers. The basic electronic structures of D-A model compounds of these copolymers were also studied by DFT calculations at the B3LYP/6-31G* level of theory. Polymer solar cells (PSCs) with a typical structure of indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) (PEDOT):poly(styrenesulfonate) (PSS)/copolymer:[6,6]-phenyl-C(61) (C(71) )-butyric acid-methyl ester (PCBM)/calcium (Ca)/aluminum (Al) were fabricated and measured under the illumination of AM1.5G at 100?mW?cm(-2) . The results showed that the device based on the copolymer with phenyl-vinylene side chains had the highest efficiency of 2.17?% with PC(71) BM as acceptor. The results presented herein indicate that all the prepared copolymers are promising candidates for roll-to-roll manufacturing of efficient PSCs. Suitable electronic, optical and photovoltaic properties of BT-based copolymers can also be achieved by fine-tuning the structures of the aryl-vinylene side chains for photovoltaic application.  相似文献   

16.
The metalloradical activation of o-aryl aldehydes with tosylhydrazide and a cobalt(II) porphyrin catalyst produces cobalt(III)-carbene radical intermediates, providing a new and powerful strategy for the synthesis of medium-sized ring structures. Herein we make use of the intrinsic radical-type reactivity of cobalt(III)-carbene radical intermediates in the [CoII(TPP)]-catalyzed (TPP=tetraphenylporphyrin) synthesis of two types of 8-membered ring compounds; novel dibenzocyclooctenes and unprecedented monobenzocyclooctadienes. The method was successfully applied to afford a variety of 8-membered ring compounds in good yields and with excellent substituent tolerance. Density functional theory (DFT) calculations and experimental results suggest that the reactions proceed via hydrogen atom transfer from the bis-allylic/benzallylic C−H bond to the carbene radical, followed by two divergent processes for ring-closure to the two different types of 8-membered ring products. While the dibenzocyclooctenes are most likely formed by dissociation of o-quinodimethanes (o-QDMs) which undergo a non-catalyzed 8π-cyclization, DFT calculations suggest that ring-closure to the monobenzocyclooctadienes involves a radical-rebound step in the coordination sphere of cobalt. The latter mechanism implies that unprecedented enantioselective ring-closure reactions to chiral monobenzocyclooctadienes should be possible, as was confirmed for reactions mediated by a chiral cobalt-porphyrin catalyst.  相似文献   

17.
Exploration of novel organic luminophores that exhibit thermally activated delayed fluorescence (TADF) in the aggregated state is very crucial for advance of delayed luminescence-based applications such as time-gated bio-sensing and temperature sensing. We report herein that synthesis, photophysical properties, molecular and crystal structures, and theoretical calculations of 2,6-bis (diarylamino)benzophenones. Absorption spectra in solution and calculations using density functional theory (DFT) method revealed that the optical excitation took place through intramolecular charge-transfer from one diarylamino moiety to an aroyl group. While the benzophenones did not luminesce in solution, the solids of the benzophenones emitted green light with moderate-to-good quantum yields. Thus, the benzophenones exhibit aggregation-induced emission. Based on the lifetime measurement, the green emission of the solids was found to include TADF. The emergence of the TADF is supported by the small energy gap between the excited singlet and triplet states, which was estimated by time-dependent DFT calculations. Thin films of poly(methyl methacrylate) doped by the benzophenones also showed green prompt and delayed fluorescence whose lifetimes were in the order of microseconds. Linear correlation between logarithm value of TADF lifetime and temperature was observed with the benzophenone in powder, suggesting that the benzophenones can serve as molecular thermometers workable under aqueous conditions.  相似文献   

18.
The synthesis and a combined spectroscopic and density functional theoretical characterization of a 3',4'-ethylenedioxy-5,5' '-bis(dicyanomethylene)-5,5' '-dihydro-2,2':5',2' '-terthiophene analogue of 7,7,8,8-tetracyanoquinodimethane (TCNQ) are presented. Electrochemical data show that this novel trimer can be both reversibly reduced and oxidized at relatively low potentials. Quantum-chemical calculations show that the compound exhibits a quinoidal structure in its ground electronic state and that a certain degree of intramolecular charge transfer takes place from the central terthienyl moiety toward both =C(CN)2 end-caps. Therefore, the amphoteric redox behavior of this novel material can be related to the coexistence of an electron-impoverished terthienyl core endowed by two electron-enriched =C(CN)2 substituents. The UV-vis spectrum is dominated by the appearance of a strong absorption near 660 nm, attributable to the highest occupied molecular orbital (HOMO) --> lowest unoccupied molecular orbital (LUMO) pi-pi electronic transition of the terthienyl spine on the basis of time-dependent density functional theory (DFT) computations. The DFT calculations performed on the minimum-energy molecular geometry about the equilibrium atomic charge distribution, topologies, and energies of the frontier orbitals around the gap and about the Raman-active vibrations associated with the strongest Raman features are also consistent with a rather effective pi-electron conjugation and the partial degree of intramolecular charge transfer mentioned above. Our study reveals this novel heteroquinoid trimer could act as a promising candidate in organic field-effect transistor (OFET) applications.  相似文献   

19.
20.
Herein we investigate the conformational and electronic properties of the 2,2′;3′,2“‐terthiophene ( B3T ) unit as the building block of thiophene dendrimeric materials. By means of DFT ground electronic state dihedral energy profiles, we get insight in the flexibility of B3 T as the prominent feature promoting the 3D arrangement. The presence of diverse conformers is explored by Raman and 1H NMR spectroscopies. A theoretical estimation of the Raman and 1H NMR spectra over the most energetically accessible conformers is found to be crucial for the appropriate assignment of the major conformer population derived from the experimental spectra. We show that energy barriers for the interconversion of conformers also play a role. Finally, the impact on the optical spectra (absorption and emission) of the α–α and α–β connections is studied and addressed by scanning the properties of the relevant low‐lying excited states. These studies highlight the relevance of the architecture of the basic molecular unit to understand charge and exciton behavior in organic semiconductors, particularly for those useful in photovoltaics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号