首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis and characterization of a novel terthiophene-based quinodimethane bearing a 3,4-ethylenedioxythiophene central unit
Authors:Berlin Anna  Grimoldi Sara  Zotti Gianni  Osuna Reyes Malavé  Ruiz Delgado Mari Carmen  Ortiz Rocío Ponce  Casado Juan  Hernandez Víctor  López Navarrete Juan T
Institution:Istituto CNR di Scienze e Tecnologie Molecolari, via C. Golgi 19, 20133 Milano, Italy.
Abstract:The synthesis and a combined spectroscopic and density functional theoretical characterization of a 3',4'-ethylenedioxy-5,5' '-bis(dicyanomethylene)-5,5' '-dihydro-2,2':5',2' '-terthiophene analogue of 7,7,8,8-tetracyanoquinodimethane (TCNQ) are presented. Electrochemical data show that this novel trimer can be both reversibly reduced and oxidized at relatively low potentials. Quantum-chemical calculations show that the compound exhibits a quinoidal structure in its ground electronic state and that a certain degree of intramolecular charge transfer takes place from the central terthienyl moiety toward both =C(CN)2 end-caps. Therefore, the amphoteric redox behavior of this novel material can be related to the coexistence of an electron-impoverished terthienyl core endowed by two electron-enriched =C(CN)2 substituents. The UV-vis spectrum is dominated by the appearance of a strong absorption near 660 nm, attributable to the highest occupied molecular orbital (HOMO) --> lowest unoccupied molecular orbital (LUMO) pi-pi electronic transition of the terthienyl spine on the basis of time-dependent density functional theory (DFT) computations. The DFT calculations performed on the minimum-energy molecular geometry about the equilibrium atomic charge distribution, topologies, and energies of the frontier orbitals around the gap and about the Raman-active vibrations associated with the strongest Raman features are also consistent with a rather effective pi-electron conjugation and the partial degree of intramolecular charge transfer mentioned above. Our study reveals this novel heteroquinoid trimer could act as a promising candidate in organic field-effect transistor (OFET) applications.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号