首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
对制备的化合物La0.8Ce0.2(Fe1-xCox)11.4Si1.6(x=0.02,0.04,0.06)的相组成、巡游电子变磁转变(IEMT)特性和磁热效应(MCE)进行了研究。粉末X射线衍射结果表明,经1373 K真空退火处理7 d后,化合物La0.8Ce0.2(Fe1-xCox)11.4Si1.6(x=0.02,0.04,0.06)均为单相立方NaZn13型晶体结构。随着Co含量由x=0.02增加到x=0.06,样品的居里温度TC由207 K上升到277 K。在0~1.5 T磁场变化下,x=0.02,0.04,0.06时样品的最大磁熵变|ΔSM(T)|分别为40.17,12.60和7.65 J.kg-1.K-1,可见该化合物有巨大的磁熵变,而且随Co含量的增加最大磁熵变迅速减小。该化合物的巨大磁熵变来源于TC处的一级相变,以及在TC以上由磁场诱导IEMT,但由于Co原子对Fe原子的替代能够抑制变磁转变的发生,因此该系化合物最大磁熵变随Co含量的增加迅速减小。  相似文献   

2.
La-Fe基NaZn13型化合物的磁场诱导熵变研究   总被引:3,自引:4,他引:3  
围绕具有一级磁性相变的La-Fe基NaZn13型化合物的磁场诱导熵变研究,从室温磁制冷目的出发讨论了材料研究和熵变机制。La-Fe-Si在190K附近5T磁场下的熵变值可达29J.kg-1.K-1。用少量Co替代Fe,可以获得室温附近5T磁场下熵变为15J.kg-1.K-1的大熵变材料。这类材料中的熵变主要由磁有序熵变和晶格熵变组成。分析了一级磁性相变体系中磁有序熵变和晶格熵变对总熵变的贡献,并发现大的熵变来源于被晶格贡献抵消后的磁有序熵变。  相似文献   

3.
采用电弧熔炼和高温退火的方法制备了Gd7Pd3-xFex(x=0, 0.2, 0.5, 0.8和1)合金材料,并对该系列合金材料的磁特性及磁热效应进行了研究。X射线粉末衍射研究表明,所有的材料均形成Th7Fe3型结构。并且随着x的增大,晶格常数、居里温度、饱和磁化强度和最大磁熵变均有所降低。相比于Gd7Pd3,掺入Fe元素的材料可以获得更接近室温的居里温度和更宽的工作温区,从而导致了7 T磁场下高达1096 J·kg^-1的相对制冷能力(RCP), Gd7Pd3-xFex有望被用于室温附近的磁制冷。  相似文献   

4.
以La Fe11.6Si1.4合金为研究对象,系统分析了该一级相变材料的居里温度(TC)、磁场诱导磁相变的临界磁场(HC)、磁化率(χ)、磁滞、磁熵变(ΔS)、制冷能力(RCP)等磁性特性。结果表明:温度诱导磁相变的居里温度和磁场诱导磁相变的临界磁场均随磁场呈线性增加,ΔTC和ΔH随磁场和温度的变化率的值分别为4.1 K·T-1和0.2 T·K-1。当合金处于纯铁磁态和顺磁态时熵变磁熵变几乎为零,但磁场诱导的磁相变,会导致某一定温度下合金磁熵变有一个突变。但合金最大熵变并不是随磁场的增加而线性增加,当磁场达到一定值后随磁场增加其值基本没有变化。不同模型计算的制冷能力均随磁场的增加而呈线性增加。在两相共存态中,同一温度下两种不同铁磁的磁化率存在差异,即因磁场诱导的铁磁态相与合金中本身的铁磁态相的磁化率存在差异,且前者小于后者,这种物理现象对深入研究温度诱导和磁场诱导磁相变的差异有一定的参考价值。  相似文献   

5.
通过X射线衍射和磁笥测量方法研究了金属间化合物Y(Fe1-xCox)11.3Nb0.7(x=0,0.05,0.10,0.20)的结构与磁性能。粉末样品的X射线衍射和热磁曲线测量表明,所有Y(Fe1-xCox)11.3Nb0.7(x=0,0.05,0.10,0.20)化合物具有ThMn12型结构,具有良好的单相性,Co替代Fe引起居里温度显著提高和晶格常数的单调减小,室温下的饱和磁化强度M。随Co含量的增加在x=0.1-0.2之间呈现极大值,各向异性场Ba随x的增加,先增加而后减小。  相似文献   

6.
利用电弧熔炼的方法制备Dy(Co1-xMx)2(M=Al,si)系列合金;发现用少量的Al或Si替代Co后所形成的系列合金的居里温度都有显著的提高。且随着替代量的增大,样品的相变类型从一级转为二级。文中着重研究了Dy(Co1-xMx)2系列合金的在较低磁场下(1T)的磁熵变,并且讨论了该系列合金具有较大磁熵变的原因以及用少量Al或Si替代Co后对磁熵变的影响,同时对它们的应用前景也进行了探讨分析。  相似文献   

7.
用不同的工艺和原料制备了3个名义成分相同的Mn1.2Fe0.8P0.48S i0.52化合物。X射线衍射结果表明,3个化合物均为Fe2P型六角结构(空间群为P-62m),并且存在少量的(Fe,Mn)3S i相。通过磁性测量发现,3个样品的居里温度有所不同,但是都在室温附近(270~290 K)。以Fe2P为原料制备的化合物具有较大的磁熵变,在1.5 T的磁场变化下其最大磁熵变为13.6 J.(kg.K)-1。以行星样品球磨机制备的化合物具有较小的热滞,最小热滞为6.7 K。这些表明不同的制备工艺和原料对化合物的居里温度、热滞和磁熵变都具有一定的影响。同时低成本的原料、简单的制备工艺、较小的热滞和较大的磁熵变使得Mn1.2Fe0.8P0.48S i0.52化合物成为一种理想的室温磁致冷候选材料。  相似文献   

8.
通过X射线衍射和磁性测量方法研究了金属间化合物Y(Fe1 -xCox) 1 1 .3 Nb0 .7(x =0 ,0 0 5 ,0 10 ,0 2 0 )的结构与磁性能。粉末样品的X射线衍射和热磁曲线测量表明 ,所有Y(Fe1 -xCox) 1 1 .3Nb0 .7(x =0 ,0 0 5 ,0 10 ,0 2 0 )化合物具有ThMn1 2 型结构 ,具有良好的单相性。Co替代Fe引起居里温度显著提高和晶格常数的单调减小 ,室温下的饱和磁化强度Ms 随Co含量的增加在x =0 1~ 0 2之间呈现极大值 ,各向异性场Ba 随x的增加 ,先增加而后减小  相似文献   

9.
通过X射线衍射和磁性测量等手段对金属间化合物CeFe10.5Si2.5的晶体结构、磁性以及磁熵变进行了研究. 结果表明,经过对铸态样品进行12 h退火所得的金属间化合物CeFe10.5Si2.5晶体为单相立方NaZn13型结构; 在1.5 T外磁场下居里温度TC~206 K附近的最大等温磁熵变为10.7 J·kg-1·K-1,并随着外磁场的增大而迅速增大; 从Arrott曲线中可以看出,在此化合物中没有明显的巡游电子变磁转变特性,但从低磁场下的热磁曲线可知,磁化强度在居里温度处发生陡峭的变化,这应该是该化合物获得大磁熵变的原因.  相似文献   

10.
利用SPS(放电等离子烧结)技术制备了La Fe11.6Si1.4/10%Co复合材料,结合XRD,OM和Versa Lab等手段,系统地研究了La Fe11.6Si1.4/10%Co复合材料的相组成、微观结构和磁热性能。不同烧结温度制备的铸态La Fe11.6Si1.4/10%Co复合材料由1∶13相、α-Fe相和Co相组成,烧结温度的提高促进了主相(1∶13相)的分解,恶化复合材料的磁热性能。OM测试结果表明,烧结温度的提高有利于孔隙尺寸的减小,提高铸态La Fe11.6Si1.4/10%Co复合材料的致密度。923 K烧结的铸态La Fe11.6Si1.4/10%Co复合材料的居里温度TC为199.8 K,0~2 T磁场范围的最大等温磁熵变为3.02 J·kg-1·K-1,RC值为40.6 J·kg-1,并表现出二级磁相变的特点,具有良好的磁热性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号