首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
通过X射线衍射分析和超导量子干涉磁强计(SQUID)磁性测量,研究了Co替代Fe含量对居里温度在室温以上的磁制冷材料La(Fe1-xCox)11.7Al1.3(x=0.072,0.081)磁结构和磁性能的影响。La(Fe1-xCox)11.7Al1.3材料的居里温度随Co的含量增加而增加,La(Fe0.919Co0.081)11.7Al1.3的居里温度为311 K。当外场变化为1.9 T时磁熵变达到3.6 J·kg^-1·K^-1,RCP值为168.6 J·kg^-1,虽然它的磁熵变小于具有巨磁熵变的磁制冷材料,但是它在磁场为1.9 T时的制冷能力与这些材料相当。  相似文献   

2.
为了探求La系磁熵变材料的短时退火工艺,利用两种方法制备了磁制冷材料La0.8Ce0.2Fe11.4Si1.6合金,其一为将电弧熔炼合金退火5天(样品A),其二为将合金利用铜模铸造方法得到快淬样品,再退火2 h(样品B)。X射线衍射表明,样品A和B主相为NaZn13相结构。通过对比发现,尽管样品A的最大磁熵变值大于样品B的,但样品B在制冷温区和制冷能力方面优于样品A。因此,快淬加短时间热处理可以大大节省时间和能量,是一种制备La0.8Ce0.2Fe11.4Si1.6磁制冷材料的高效且性能优越的方法。  相似文献   

3.
La-Fe-M(M=Al, Si)化合物磁热性能研究进展   总被引:5,自引:1,他引:5  
介绍了La-Fe-M(M=AI,Si)化合物在磁热性能研究方面的最新进展。具有NaZn13型晶体结构,含高浓度Fe的La-Fe—M(M=AI,Si)化合物为良好的软磁材料;用少量的Co替代化合物中Si,Al元素可以将化合物的居里温度提高至室温;对La(Fe1-yCoy)xSi13-x化合物,适量的Si,Co组合可使化合物在室温产生可与Gd5Si2Ge2比拟的磁热效应;加入适量的间隙原子H,也可使La(FexSi1-x)13在室温的磁热性能远远大于金属Gd;对含Si量低及含Si量高的La(FexSi1-x)13化合物在相转变点附近由温度和磁场诱导相变的本质做了详细阐述。  相似文献   

4.
利用SPS(放电等离子烧结)技术制备了La Fe11.6Si1.4/10%Co复合材料,结合XRD,OM和Versa Lab等手段,系统地研究了La Fe11.6Si1.4/10%Co复合材料的相组成、微观结构和磁热性能。不同烧结温度制备的铸态La Fe11.6Si1.4/10%Co复合材料由1∶13相、α-Fe相和Co相组成,烧结温度的提高促进了主相(1∶13相)的分解,恶化复合材料的磁热性能。OM测试结果表明,烧结温度的提高有利于孔隙尺寸的减小,提高铸态La Fe11.6Si1.4/10%Co复合材料的致密度。923 K烧结的铸态La Fe11.6Si1.4/10%Co复合材料的居里温度TC为199.8 K,0~2 T磁场范围的最大等温磁熵变为3.02 J·kg-1·K-1,RC值为40.6 J·kg-1,并表现出二级磁相变的特点,具有良好的磁热性能。  相似文献   

5.
通过X射线衍射和磁笥测量方法研究了金属间化合物Y(Fe1-xCox)11.3Nb0.7(x=0,0.05,0.10,0.20)的结构与磁性能。粉末样品的X射线衍射和热磁曲线测量表明,所有Y(Fe1-xCox)11.3Nb0.7(x=0,0.05,0.10,0.20)化合物具有ThMn12型结构,具有良好的单相性,Co替代Fe引起居里温度显著提高和晶格常数的单调减小,室温下的饱和磁化强度M。随Co含量的增加在x=0.1-0.2之间呈现极大值,各向异性场Ba随x的增加,先增加而后减小。  相似文献   

6.
用不同的工艺和原料制备了3个名义成分相同的Mn1.2Fe0.8P0.48S i0.52化合物。X射线衍射结果表明,3个化合物均为Fe2P型六角结构(空间群为P-62m),并且存在少量的(Fe,Mn)3S i相。通过磁性测量发现,3个样品的居里温度有所不同,但是都在室温附近(270~290 K)。以Fe2P为原料制备的化合物具有较大的磁熵变,在1.5 T的磁场变化下其最大磁熵变为13.6 J.(kg.K)-1。以行星样品球磨机制备的化合物具有较小的热滞,最小热滞为6.7 K。这些表明不同的制备工艺和原料对化合物的居里温度、热滞和磁熵变都具有一定的影响。同时低成本的原料、简单的制备工艺、较小的热滞和较大的磁熵变使得Mn1.2Fe0.8P0.48S i0.52化合物成为一种理想的室温磁致冷候选材料。  相似文献   

7.
以La Fe11.6Si1.4合金为研究对象,系统分析了该一级相变材料的居里温度(TC)、磁场诱导磁相变的临界磁场(HC)、磁化率(χ)、磁滞、磁熵变(ΔS)、制冷能力(RCP)等磁性特性。结果表明:温度诱导磁相变的居里温度和磁场诱导磁相变的临界磁场均随磁场呈线性增加,ΔTC和ΔH随磁场和温度的变化率的值分别为4.1 K·T-1和0.2 T·K-1。当合金处于纯铁磁态和顺磁态时熵变磁熵变几乎为零,但磁场诱导的磁相变,会导致某一定温度下合金磁熵变有一个突变。但合金最大熵变并不是随磁场的增加而线性增加,当磁场达到一定值后随磁场增加其值基本没有变化。不同模型计算的制冷能力均随磁场的增加而呈线性增加。在两相共存态中,同一温度下两种不同铁磁的磁化率存在差异,即因磁场诱导的铁磁态相与合金中本身的铁磁态相的磁化率存在差异,且前者小于后者,这种物理现象对深入研究温度诱导和磁场诱导磁相变的差异有一定的参考价值。  相似文献   

8.
La0.6Pr0.05Fe11.5-xCoxSi1.5合金的磁性和磁热效应   总被引:1,自引:0,他引:1  
使用电弧炉熔炼法制备La0.6Pr0.05Fe11.5-xCoxSi1.5(x=0,0.1,0.2,0.3,0.4,0.5和0.6)系列合金.XRD分析与SEM成分分析表明该系列合金中除含有少量富镧相(P4/nmm)和α-Fe相外.均由NaZh13型立方结构单相组成.品格常数随着Co含量的增加基本保持不变.磁性测量表明该系列合金的Tc随着Co含母的增加旱线性增加,当x=0.6时,Tc达264 K.合金的升、降温磁化曲线随着Co含量的增加逐渐重合,即表明该系列合金的热滞随着Co含量的增加而减小;利用Maxwell方程计算得出在x=0时,合金在△B=1.5 T的外磁场下-△Sm达到38.4 J·kg-1·K-1.这种磁熵变来源于外磁场引起的一级相变,随着Co含量的增加-△Sm线性减小,这是由于Co含量的增加使合金的磁相变出现由一级相变向二级相变转变.  相似文献   

9.
通过X射线衍射和磁性测量研究了Tb(Co1-xSnx)2(x=0,0.025,0.050,0.075,0.100)合金的相结构和磁热性能。经分析可知Sn在TbCo2中的替代是有限的,X粉末衍射分析确定TbCo2具有MgCu2结构,其他样品由TbCo2,TbCo3和Tb5Sn3三相组成,TbCo2为主要相。随着Sn成分的增加,杂质相TbCo3和Tb5Sn3的含量增加,所有样品保持第二序磁相变。Sn的替代使磁相变的温度稍微有所提高,样品TbCo2的TC值为230 K,样品Tb(Co0.950Sn0.050)2的TC值为233 K,但Sn的成分继续增加,样品的TC值有所下降。在外加磁场2 T的作用下,样品Tb(Co1-xSnx)2(x=0,0.025,0.050,0.075)最大磁熵变值分别为3.44,2.29,1.64,1.16 J.kg-1.K-1。  相似文献   

10.
通过X射线衍射和磁性测量等手段对金属间化合物CeFe10.5Si2.5的晶体结构、磁性以及磁熵变进行了研究. 结果表明,经过对铸态样品进行12 h退火所得的金属间化合物CeFe10.5Si2.5晶体为单相立方NaZn13型结构; 在1.5 T外磁场下居里温度TC~206 K附近的最大等温磁熵变为10.7 J·kg-1·K-1,并随着外磁场的增大而迅速增大; 从Arrott曲线中可以看出,在此化合物中没有明显的巡游电子变磁转变特性,但从低磁场下的热磁曲线可知,磁化强度在居里温度处发生陡峭的变化,这应该是该化合物获得大磁熵变的原因.  相似文献   

11.
When the trimethyl derivatives of aluminium, gallium and indium react with glyoximato metallates, (R2C2N2(O)OH)2MetII (R = H, CH3; MetII = Ni, Pd, Pt, Cu), in a 21 molar ratio, 2 mol of methane are evolved and monomeric bis(dimethylmetal(III)glyoximato)metallates(II) (metal(III) = Al, Ga, In) are formed in high yields. The vibrational and NMR spectra of the new complexes were measured and were partly resolved. The X-ray structure determinations of two of these compounds show non-planar structures of approximate C2h and C2 symmetry, respectively, with weak metal(III)?metal(II) π-interactions.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号