首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Nitrogen doped TiO2 represents one of the most promising material for photocatalitic degradation of environmental pollutants with visible light. However, at present, a great deal of activity is devoted to the anatase polymorph while few data about rutile are available. In the present paper we report an experimental characterization of N doped polycrystalline rutile TiO2 prepared via sol-gel synthesis. Nitrogen doping does not affect the valence band to conduction band separation but, generates intra band gap localized states which are responsible of the on set of visible light absorption. The intra band gap states correspond to a nitrogen containing defect similar but not coincident with that recently reported for N doped anatase.  相似文献   

2.
Fe–TiO2–SiC composite with photocatalytic activity has been synthesized by a low cost sonochemical process in the presence of citric acid. The addition of citric acid during the sonochemical process allows the formation of a photocatalytic coating of Fe–TiO2 onto silicon carbide. Experimental characterization results indicate that the composite was formed over all the surface of the silicon carbide (SiC) with an anatase crystalline TiO2 phase with iron incorporation. The incorporation of iron narrows the band gap of TiO2 which allow the absorbtion of light with a large wavelength. The obtained Fe–TiO2–SiC composite exhibits good enhanced photocatalytic activity for the degradation of rhodamine B under solar simulator irradiation in comparison with the commercial TiO2–P25.  相似文献   

3.
La-doped TiO2 nanotubes (La/TiO2 NTs) were prepared by the combination of sol-gel process with hydrothermal treatment. The prepared samples were characterized by using transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectra, and ultraviolet-visible spectra. The photocatalytic performance of La/TiO2 NTs was studied by testing the degradation rate of methyl orange under ultraviolet (UV) irradiation. The results indicated La/TiO2 NTs calcined at 300°C consisted of anatase as the unique phase. The absorption spectra of the La/TiO2 NTs showed a stronger absorption in the UV range and a slight red shift in the band gap transition than that of pure TiO2 nanotubes. The photocatalytic performance of TiO2 NTs could be improved by the doping of lanthanum ions, which is ascribed to several beneficial effects the formation of Ti-O-La bond and charge imbalance, existing of oxygen defects and Ti3+ species, stronger absorption in the UV range and a slight red shift in the band gap transition, as well as higher equilibrium dark adsorption of methyl orange. 0.75 wt% La/TiO2 NTs had the best catalytic activity.  相似文献   

4.
Metastable Bi20TiO32 samples were synthesized by a high-temperature quenching method using α-Bi2O3 and anatase TiO2 as raw materials. The photocatalytic activity of the as-prepared samples was measured with the photodegradation of methyl orange at room temperature under visible light irradiation. The Bi20TiO32 samples exhibited good absorption in the visible light region with a band gap of about 2.38 eV and the band structure of Bi20TiO32 was studied. Photodegradation against methyl orange was much better than α-Bi2O3 prepared by the same way. The photocatalytic activity of Bi20TiO32 samples is supposed to be associated with the hybridized Bi 6s and O 2p orbitals. In addition, the dispersive characteristic of Bi 6s orbital in the hybridized valence band facilitates the mobility of the photogenerated carriers and hampers their recombination.  相似文献   

5.
刘昊  林梦海  谭凯 《物理化学学报》2012,28(8):1843-1848
通过卷曲二维锐钛矿(101)周期性单层片(sheets)构造了一系列不同手性((n,0), (0,m), (n,m))的一维单壁TiO2纳米管. 用周期性紧束缚密度泛函理论(DFTB)方法计算并比较了不同管径和手性的TiO2纳米管在几何结构、电子性质等方面的差别. 结果表明: 除了(6,0)管, 其余纳米管随着管径的增大, 应变能和能隙减小. 而在管径相同的情况下, 不同手性的(n,m)纳米管的应变能随着n/m的增加呈现先增大后减小的趋势, 能隙变化不大.  相似文献   

6.
Although TiO2 is an efficient photocatalyst, its large band gap limits its photocatalytic activity only to the ultraviolet region. An experimentally synthesized ternary Fe/C/S‐doped TiO2 anatase showed improved visible light photocatalytic activity. However, a theoretical study of the underlying mechanism of the enhanced photocatalytic activity and the interaction of ternary Fe/C/S‐doped TiO2 has not yet been investigated. In this study, the defect formation energy, electronic structure and optical property of TiO2 doped with Fe, C, and S are investigated in detail using the density functional theory + U method. The calculated band gap (3.21 eV) of TiO2 anatase agree well with the experimental band gap (3.20 eV). The defect formation energy shows that the co‐ and ternary‐doped systems are thermodynamically favorable under oxygen‐rich condition. Compared to the undoped TiO2, the absorption edge of the mono‐, co‐, and ternary‐doped TiO2 is significantly enhanced in the visible light region. We have shown that ternary doping with C, S, and Fe induces a clean band structure without any impurity states. Moreover, the ternary Fe/C/S‐doped TiO2 exhibit an enhanced photocatalytic activity, a smaller band gap and negative formation energy compared to the mono‐ and co‐doped systems. Moreover, the band edges of Fe/C/S‐doped TiO2 align well with the redox potentials of water, which shows that the ternary Fe/C/S‐doped TiO2 is promising photocatalysts to split water into hydrogen and oxygen. These findings rationalize the available experimental results and can assist the design of TiO2‐based photocatalyst materials.  相似文献   

7.
Titanium dioxide (TiO2), co-deposited with Fe and N, is first implanted with Fe by a metal plasma ion implantation (MPII) process and then annealed in N2 atmosphere at a temperature regime of 400-600 °C. First-principle calculations show that the (Fe, N) co-deposited TiO2 films produced additional band gap levels at the bottom of the conduction band (CB) and on the top of the valence band (VB). The (Fe, N) co-deposited TiO2 films were effective in both prohibiting electron-hole recombination and generating additional Fe-O and N-Ti-O impurity levels for the TiO2 band gap. The (Fe, N) co-deposited TiO2 has a narrower band gap of 1.97 eV than Fe-implanted TiO2 (3.14 eV) and N-doped TiO2 (2.16 eV). A significant reduction of TiO2 band gap energy from 3.22 to 1.97 eV was achieved, which resulted in the extension of photocatalytic activity of TiO2 from UV to Vis regime. The photocatalytic activity and removal rate were approximately two-fold higher than that of the Fe-implanted TiO2 under visible light irradiation.  相似文献   

8.
采用改进的sol-gel法和浸渍法制备了TiO2掺杂稀土离子La3+、Y3+、Gd3+、Er3+、Nd3+、Pr3+的RE/TiO2光催化剂,运用FTIR、XRD、TEM、低温氮吸附/脱附、TG/DTA、UV-Vis DRS、表面光电压谱(SPS)等进行表征,以气相光催化降解乙烯、溴代甲烷作为探针反应,阐明了RE/TiO2光催化剂的谱学特性与气相光催化性能的关系。结果显示,稀土离子掺杂后,TiO2的锐钛矿含量增加,比表面积增大,粒径变小,吸收边发生蓝移,表面光电压的响应阈值增大,此外,Pr3+除外的其它稀土离子掺杂的TiO2的表面光电压信号增强;光催化降解实验表明,与纯TiO2相比,La3+、Y3+、Gd3+、Er3+、Nd3+掺杂TiO2样品上乙烯、溴代甲烷的光催化活性均有不同程度的增强,而且表现出较强的矿化能力。但是,掺杂Pr3+的TiO2的光催化性能降低恰好对应较弱的表面光电压信号。所以,本文认为提高光生电子-空穴对的分离效率是改善光催化性能的关键因素。  相似文献   

9.
以静电纺丝技术制备的TiO_2纳米纤维为基质和反应物,结合一步水热法制得Gd-N共掺杂SrTiO_3/TiO_2复合纳米纤维光催化剂。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电镜(HRTEM)、X射线光电子能谱(XPS)、紫外-可见漫反射(UV-Vis DRS)和荧光光谱(PL)等方法对其微观结构、形貌和光学性能进行表征。结果表明:SrTiO_3和TiO_2形成异质结能够使光生电子和空穴得到很好的分离,而Gd-N共掺杂产生新带隙,可以拓宽光谱响应范围至可见光区,并引起晶格缺陷,成为光生电子-空穴对的浅势捕获阱。Gd-N共掺杂与异质结的协同作用有效提高了SrTiO_3/TiO_2复合纳米纤维的可见光催化活性。  相似文献   

10.
A simple method is described for the synthesis of carbon nanotube/anatase titania composites by a combination of a sol-gel method with a self-assembly technique at 65 °C. This method makes use of polyelectrolyte for wrapping multi-walled carbon nanotube (MWCNT) and providing them with adsorption sites for electrostatically driven TiO2 nanoparticle deposition. The composites were characterized using X-ray diffraction, transmission electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy, and photoluminescence for analyzing their crystal phase, microstructure, particle size, and other physicochemical properties. The results showed that MWCNT were covered with an anatase TiO2 thin layer or surrounded by an anatase TiO2 thick coating, which is constructed of TiO2 particles about 6 nm in size. The composites were rich in surface hydroxyl groups. The excited e in conduction band of TiO2 may migrate to MWCNT. Concerning the potential applicability, MWCNT/TiO2 composites showed excellent photocatalytic activity toward the photodegradation of methyl orange.  相似文献   

11.
The structure of nanoparticles and the spatial arrangement of photogenerated thermalized charge carriers are studied for a series of isomers of small anatase nanoparticles (TiO2)29(H2O)4, (TiO2)70(H2O)4, and (TiO2)70 with faces (001) and (101) on the surface. It is shown that the location of surface hydroxyl groups and their replacement by surface oxygen atoms affect the nature and degree of deformation of the nanoparticle structure. The location of the boundary orbitals depends both on the size of the nanoparticles and on the location of the hydroxyl groups, as well as on the degree of dehydroxylation, which leads to the replacement of the hydroxyl groups by the surface oxygen atoms. In the case of a certain arrangement of hydroxyl groups or surface oxygen atoms, uncharged small stoichiometric anatase nanoparticles begin to absorb light in the visible region of the spectrum (the band gap width Eg decreasing to 2.25 eV). This is associated with the energy levels at the edge of the band gap near the valence band and the conduction band.  相似文献   

12.
A new pyrochlore-type Na0.32Bi1.68Ti2O6.46(OH)0.44 with the cubic cell of a=10.339(5) Å was prepared by hydrothermal reaction using TiO2 (anatase) and Bi2O3 in NaOH solution. This compound was obtained when the molar ratio of NaOH/TiO2 was above 2 and the reaction temperature was above 240 °C. The TG-curve of as-prepared sample showed a mass loss of 0.8 mass% which was caused by release of OH group. This compound decomposed to a pyrochlore-type compound and a layered-type Na0.5Bi4.5Ti4O15 above 800 °C. The optical band gap of Na0.32Bi1.68Ti2O6.46(OH)0.44 was estimated to be 2.5 eV.  相似文献   

13.
The light-scattering effect in the dye-sensitized solar cells (DSCs) was studied by controlling TiO2 phase composition and morphology by fabrication of double-layer cells with different arrangement modes. The starting material for preparation of TiO2 cells was synthesized by an aqueous sol–gel process. X-ray diffraction and field emission scanning electron microscopic analyses revealed that TiO2 nanoparticles had particle size ranging between 18 and 44 nm. The optical property and band gap energy of TiO2 nanoparticles were studied through UV–Vis absorption. The indirect optical band gap energy of anatase and rutile nanoparticles was found to be 3.47 and 3.41 eV, respectively. The double-layer DSC made of nanostructured TiO2 film with phase composition of 78 % anatase and 22 % rutile as the under-layer and mixtures of anatase-nanoparticles and anatase-microparticles as the over-layer (i.e., NM solar cell) was shown the highest power conversion efficiency (PCE) of 6.04 % and open circuit voltage of 795 mV. This was achieved due to the optimal balance between the light scattering effect and dye sensitization parameters. Optimum light scattering of photoanode led to improve the PCE of NM double-layer solar cell which was demonstrated by diffuse reflectance spectroscopy.  相似文献   

14.
Titanium dioxide thin films have been synthesized by sol–gel spin coating technique on glass and silicon substrates with and without surfactant polyethylene glycol (PEG). XRD and SEM results confirm the presence of nano-crystalline (anatase) phase at an annealing temperature of 300 °C. The influence of surfactant and annealing temperature on optical properties of TiO2 thin films has been studied. Optical constants and film thickness were estimated by Swanepoel's (envelope) method and by ellipsometric measurements in the visible spectral range. The optical transmittance and reflectance were found to decrease with an increase in PEG percentage. Refractive index of the films decreased and film thickness increased with the increase in percentage of surfactant. The refractive index of the un-doped TiO2 films was estimated at different annealing temperatures and it has increased with the increasing annealing temperature. The optical band gap of pure TiO2 films was estimated by Tauc's method at different annealing temperature.  相似文献   

15.
The source of unoccupied Ti 3d states in the case of stoichiometric anatase structured (TiO2)n clusters has been investigated using ab initio methods. These unoccupied gap states appear for example in the case of a stoichiometric (TiO2)38 cluster. We show that the origin of these gap states is related to effective subcluster formation which gives rise to empty defect‐like gap states, when these states are split off from conduction band. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
TiO2 (B) and TiO2 anatase nanowires were prepared at 150 °C for 120 h by a hydrothermal method followed by calcination in air at 400 °C for 2 h and at 700 °C for 2 h for TiO2 (B) and TiO2 anatase, respectively. Although dye-sensitized solar cells (DSC) with fully nanowire electrodes showed a rather low light-to-electricity conversion efficiency of 1.33 % for TiO2 (B) and 2.42% for TiO2 anatase, 10 wt % nanowire-dispersed electrodes in a P-25 TiO2-nanoparticle matrix demonstrated improved efficiency of 6.17 % for TiO2 (B) and 6.53% for TiO2 anatase, these exceeding that of pure P-25 electrodes in this work (η=5.59%). The dominant mechanisms of the improvement at 10 wt% for the two different polymorphs are thought to be different, i.e., a light-scattering and film-thickness increment for the TiO2 (B) system, whereas there is an improved conduction path through the matrix for the TiO2 anatase system.   相似文献   

17.
Nanocrystalline TiO2 thin films on silica glass substrates were prepared by using a naphthenic acid precursor. As-deposited thin films were heat treated at 500, 600, 700 and 800C for 30 min in air. The TiO2 thin films were analyzed by High Resolution X-ray diffraction, ultra violet—visible—near infrared spectrophotometer, field emission—scanning electron microscope and scanning probe microscope. After annealing at 600 and 700C, the XRD patterns consist of only anatase peaks of TiO2 film. Rutile(110) peak begins to appear at an annealing temperature of 800C. Relative high transmittance at visible range was obtained for all films except the film annealed at 800C. Optical band gap, Eg, is in the range between 3.53 and 3.78 eV except the TiO2 film annealed at 500C. The best hydrophilicity was achieved with a high-temperature annealing.  相似文献   

18.
本工作采用改进的溶胶-凝胶法和浸渍法制备了TiO2掺杂稀土离子La3+的La/TiO2光催化剂,运用XRD、N2吸附脱附、紫外可见漫反射光谱(DRS)、表面光电压谱(SPS)等手段进行表征,同时利用原位红外技术考察了La/TiO2样品光催化降解乙烯、丙酮、苯的气-固相光催化氧化反应,对其光催化降解有机污染物的过程进行了研究。结果表明,TiO2经适量La3+掺杂后,锐钛矿晶型的含量增加,晶粒度减小,比表面积增大,禁带宽度增加,表面光电压信号增强,光生电子-空穴对有效分离;La/TiO2样品对乙烯、丙酮、苯的光催化性能与纯TiO2相比均有不同程度的改善,乙烯可以被光催化氧化完全矿化生成CO2,而丙酮被光催化氧化可能生成中间产物丙酸,苯被光催化氧化可能生成中间产物苯酚和苯醌。  相似文献   

19.
王挺  吴礼光  蒋新 《无机化学学报》2011,27(8):1477-1482
利用吸附相反应技术制备得到了掺杂不同浓度的Fe2O3的TiO2复合光催化剂。通过透射电子显微镜(TEM)、紫外可见光谱和X射线衍射(XRD)研究不同掺杂浓度对TiO2形貌和结晶过程的影响,并利用3种波长光源下的甲基橙光降解实验考评了各个复合光催化剂的催化活性。结果表明,掺杂后复合光催化剂中Fe2O3分散性较好较均匀。在TiO2紫外可见吸收光谱中由于Fe2O3的掺杂而出现了红移,而且随着掺杂浓度增加红移越来越明显,复合光催化剂的禁带宽度也越来越小。在焙烧过程中无定形Fe2O3或Fe3+进入了TiO2的晶格结构,从而抑制了TiO2的结晶过程。半导体禁带宽度的减少以及TiO2结晶过程的抑制作用,都导致紫外光下复合光催化剂催化活性的降低。但Fe2O3的掺杂也使得复合光催化剂在可见光区出现了一定的光催化活性。  相似文献   

20.
以锐钛矿相TiO2溶胶为基底,采用沉淀法和液相沉积法制备了TiO2/Cu2O/Pt复合空心微球,通过改变n(Ti4+)∶nCu2+和H2Pt Cl6·6H2O溶液的加入量对TiO2的形貌和结构进行调控,采用不同的方法对不同样品的物相及结构、微观形貌和光学性能进行了对比分析。分析结果表明,复合材料中Pt与Cu2O的引入产生协同效应,不仅在一定程度上阻止了电子-空穴的复合,还降低了禁带宽度,在可见光区域光吸收明显增强。与TiO2、Cu2O和TiO2/Cu2O光催化剂相比较,TiO2/Cu2O/Pt降解有机污染物的能力显著增强,首次光照120 min可降解93%的甲基橙(MO)溶液,4次循环后降解率为71%,具有良好的光催化...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号