首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用溶液沉淀法制备了部分水解的聚甲基丙烯酸甲酯(h-PMMA)/氢氧化钙(Ca(OH)2)复合物.采用X-射线衍射(XRD)、红外光谱(FTIR)、等离子体发射光谱和差示扫描量热表征了h-PMMA/Ca(OH)2复合物的组成与结构;采用刚果红测试、动态热稳定测试和热失重分析(TGA)研究了复合物对聚氯乙烯(PVC)的热稳定效果;通过紫外-可见(UV-Vis)光谱、扫描电镜(SEM)照片和熔融塑化曲线研究了复合物对PVC透明性和塑化行为的影响.结果表明,在Ca(OH)2晶体生长过程中,h-PMMA通过—COO-/Ca2+离子配位作用吸附于Ca(OH)2表面,不仅限制了Ca(OH)2粒子尺寸,且有助于Ca(OH)2在PVC中均匀分散.所得h-PMMA/Ca(OH)2复合物在显著提高PVC热稳定性和塑化能力的同时,还使PVC保持透明性.  相似文献   

2.
于洺  张玉亭 《物理化学学报》2002,18(11):1005-1008
用银配合物制备均匀球形AgI纳米粒子,粒径20~100 nm范围内可自由调控.用AgI作为内置核,在尿素存在下,将Y(NO3)3进行升温水解,在预置粒子上包覆Y(OH)CO3形成复合粒子,并符合表面膜机理.结合X射线、电镜照片,考察了Y(NO3)3、尿素、银配合物、内置核的浓度,反应时间,水解温度,表面电荷对反应体系的影响.并加入配合剂Na2S2O3,运用生成稳定配合物的方法溶解内置核,最终得到Y(OH)CO3中空粒子.  相似文献   

3.
673K分解Cu/AI物质的量比分别为0.5、1和2的Cu-AI水滑石转化为Cu(AI)O复合物。XRD测定仅显示CuO物相,表明组成成分较均一。微量吸附量热法测定Cu(AI)O复合物表面酸碱中心的强度和数量,给出了吸附分子CO2/NH3的吸附曲线。量热结果展示,样品的酸中心强度顺序是:0.5CAO>CAO>2CAO,而碱中心强度顺序是:0.5CAO<CAO<2CAO。显然,样品的酸性(碱性)随着AI(Cu)含量的提高而逐渐增强。研究表明,样品的NH3和CO2起始吸附热与其Sanderson电负性线性相关。  相似文献   

4.
以4-酰基吡唑啉酮衍生物为配体合成了2个Mn(Ⅱ)配合物[Mn2L2(μ-CH3OH)2(CH3OH)2](1)和{[Mn L(μ-CH3OH)]·CH3OH·CHCl3}n(2)(H2L=N-(1-苯基-3-苄基-4-丙烯基-5-吡唑啉酮)-异烟酰肼),利用元素分析、红外光谱、紫外光谱、热重和X-射线单晶衍射分析进行了表征。结果表明反应体系的p H值影响配体的配位方式,所得配合物1为双核结构,而2为2D网状结构。热重分析表明,配合物1的稳定性高于配合物2的。  相似文献   

5.
CO2重整甲烷反应高效稳定Ni/ZrO2催化剂的纳米结构特点   总被引:4,自引:0,他引:4  
分别通过在常压流动N2气中加热处理ZrO(OH)2醇凝胶和在空气中焙烧ZrO(OH)2水凝胶制备了含不同晶相组成和不同尺寸ZrO2纳米粒子的Ni/ZrO2催化剂.Ni/ZrO2催化剂上CO2重整CH4反应的活性和稳定性以及多种催化剂表征(XRD,TEM,TPR及TPD等)数据表明,高效稳定的Ni/ZrO2催化剂必须具有“金属/氧化物”纳米复合物的特征.ZrO2纳米粒子的晶相组成对CO2重整甲烷反应中纳米复合物型Ni/ZrO2催化剂的稳定性没有明显影响.  相似文献   

6.
在(CH_3)_3NO的存在下Ru_3(CO)_(12)的CO取代反应动力学与机理   总被引:1,自引:2,他引:1  
过渡金属羰基簇合物的动力学和机理研究是阐明催化过程和设计新羰基簇催化剂必不可少的基础理论工作。这一领域的研究,近年来受到广泛的重视,但现有的资料仅限于简单的热取代反应。本文研究了Ru_3(CO)_(12)在氧原子转移试剂Me_3NO-一种理想的脱羰试剂的存在下,CH_2Cl_2-C_2H_5OH混合溶剂中的CO被L[L=PPh_3、PB_(u3)~n、AsPh_3、P(OPh)_3]取代的动力学,并提出了反应机理。  相似文献   

7.
以Sm2O3、Gd2O3与Ce2(CO3)3.nH2O为原料,采用Sol-Gel法制备了二元稀土掺杂(Sm2O3)0.04(Gd2O3)0.06Ce0.8O2.δ纳米粉体.测定了pH值对0.80Ce(OH)4·0.08Sm(OH)3·0.12Gd(OH)3水溶胶体系zeta电位的影响.pH值约为7.0时,体系的Zeta电位为0,即体系的等电点(IEP)为7.0.pH值为10.0时,Zeta电位达到最大值-18.5my,说明此时该体系的稳定性最好.DTA/TG热分析表明,0.80Ce(OH)4·0.08Sm(OH)3·0.12Gd(OH)3粉体的热分解温度约为232℃.由粉末XRD分析可知,经750℃焙烧的二元稀土掺杂CeO2粉末为立方萤石结构,说明Sm2O3与Gd2O3已完全固溶到CeO2中形成了CeO2基固溶体.由TEM照片可以看出,粉末具有良好的分散性,呈软团聚状态,粒径在5-10nm之间.经BET测试计算的平均颗粒尺寸为11nm,与TEM结果是一致的.  相似文献   

8.
Ni(OCH3)2/SiO2催化剂的制备及其合成碳酸二甲酯的反应性能   总被引:4,自引:0,他引:4  
采用表面改性和离子交换相结合的方法,制备了负载型单核金属甲氧基配合物Ni(OCH3)2/SiO2催化剂。利用IR、TPD、TPSR和微反技术,考察了催化剂的表面结构以及CO2、CH3OH在催化剂表面上的化学吸附和反应性能。结果表明,负载型单核金属甲氧基配合物Ni(OCH3)2/SiO2中,Ni^2 与载体SiO2表面的O^2-以双齿形式配位;在催化剂表面存在CO2的桥式吸附态和甲氧碳酸酯基物种两种吸附态,CH3OH则只有一种分子吸附态。在373-473K条件下,CO2和CH3OH在催化剂上的反应物主要是DMC、H2O以及少量的CO、CH4和CH2O,催化剂的活性由表面甲氧碳酸酯基物种与分子吸附态甲醇的反应决定的。讨论了催化剂上CO2和CH3OH的活化过程及吸附态的形成机理。  相似文献   

9.
在流动余辉装置上,研究了SO(c1∑-)的猝灭动力学过程.获得了SO2,O2,CO2,N2,He,CS2,CH3OH,C2H5OH,C3H7OH,C4H9OH,CH3COCH3,C6H6 CH2Cl2,CH2Br,CHCl3,CCl4等16种分子与SO(c1∑-)发生猝灭反应的速率常数.初步分析表明:醇类分子CnH2n+1OH(n=1,2,3,4)中的C-H键的数目与其对SO(c1∑-)的猝灭速率成正比;CO2,N2等非极性无机小分子对SO(c1∑-)的猝灭作用不明显,强极性分子SO2对SO(c1∑-)的猝灭作用较强.卤代烷烃中的卤素原子的大小对SO(c1∑-)的猝灭过程发挥着较重要的作用;而氯代烷烃中氯原子的个数与猝灭速率之间的关系不明显.  相似文献   

10.
加料方式对CuO/ZnO/Al2O3系催化剂前驱体性质的影响   总被引:5,自引:4,他引:5  
用XRD、TG-DTG、TPR技术研究了不同加料方式对CuO/ZnO/Al2O3系催化剂前驱体物相组成及其结晶情况的影响,用加压微反装置考察了催化剂合成甲醇反应活性。结果表明, 加料方式对Cu2+形成的中间化合物的物相组成及结晶度影响显著,对Zn2+及Al3+的沉淀物相的影响很小。不同加料方式对催化剂前驱体物相组成及催化剂性能的影响主要是形成的初始前驱体中Cu的物相及结晶度不同。正加法主要形成Cu2(OH)3NO3,并流法主要形成无定形Cu2CO3(OH)2,后者与Zn5(CO3)2(OH)6相互作用转化为(Cu,Zn)2CO3(OH)2和(Cu,Zn)5(CO3)2(OH)6,由它们分解形成的CuO-ZnO固溶体是合成甲醇反应的活性相。并流法能最大程度的形成CuO-ZnO固溶体,有利于CuO粒子的细化,其催化活性较好。  相似文献   

11.
The latex blending method was chosen to prepare Kaolinite/emulsion-polymerization styrene butadiene rubber (ESBR) nanocomposite to improve the interaction between filler particles and rubber matrix chains. The influences of kaolinite particles size, filler contents, and flocculants types on dynamic mechanical properties and the relative reinforcement mechanism of the prepared composite were systematic investigated and proposed. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed that the kaolinite particles were finely dispersed into the rubber matrix and arranged in parallel orientation. The prepared nanocomposites by latex blending exhibited improved crosslinking characteristic and dynamic mechanical parameters. The KAl (SO4)2 flocculant presented obvious modification in dynamic properties and crosslinking characteristic. Both the decrease in kaolinite particle size and the increase in kaolinite content can greatly improve the storage modulus and reinforcing effect of kaolinite/ESBR nanocomposites. The dynamic reinforcement mechanism of kaolinite can be explained by filler network including a certain thickness of rubber shell on the surface of kaolinite lamellar structure and the aggregations network between kaolinite particles The optimum way to balance the dynamic properties of rubber nanocomposites at different temperatures is to reduce the surface difference between kaolinite and rubber matrix and the degree of filler-filler networking on the basis of kaolinite with nanoscale (nanometer effect).  相似文献   

12.
Guo Z  Du F  Li G  Cui Z 《Inorganic chemistry》2006,45(10):4167-4169
Single-crystal cerium hydroxide carbonate (Ce(OH)CO3) triangular microplates with the hexagonal phase have been successfully synthesized by a hydrothermal method at 150 degrees C using cerium nitrate (Ce(NO3)3.6H2O) as the cerium source, aqueous carbamide as both an alkaline and carbon source, and cetyltrimethylammonium bromide (CTAB) as a surfactant. Single-crystal ceria (CeO2) triangular microplates have been fabricated by a thermal decomposition-oxidation process at 650 degrees C for 7 h using single-crystal Ce(OH)CO3 microplates as the precursor. The shape of the Ce(OH)CO3 microplate was sustained after thermal decomposition-oxidation to CeO2. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), differential scanning calorimetric analysis (DSC), and thermogravimetric analysis (TG).  相似文献   

13.
Janus Cu2(OH)2CO3/CuS microspheres were prepared via a Pickering emulsion route for the first time. By treating the Janus Cu2(OH)2CO3/CuS microspheres with dilute hydrochloric acid, ringent Cu2(OH)2CO3/CuS core/shell microspheres and ringent CuS shells were obtained. The hatch size of the ringent CuS shells increased with the increase of the hydrophobicity of the precursor Cu2(OH)2CO3 microspheres. Scanning electron microscopy, X-ray diffraction, energy dispersion spectra, and particle size analysis were used to characterize the products thus formed.  相似文献   

14.
This paper presents a novel method for preparation of polymer-silica colloidal nanocomposites based on emulsion polymerization and subsequent sol-gel nanocoating process. The polystyrene latex particles bearing basic groups on their surfaces were successfully synthesized through emulsion polymerization using 4-vinylpyridine (4VP) as a functional comonomer and polyvinylpyrrolidone (PVP) as a surfactant. A series of poly(styrene-co-4-vinylpyridine)/SiO2 nanocomposite particles with smooth or rough core-shell morphology were obtained through the coating process. The poly(styrene-co-4-vinylpyridine) particles could be dissolved subsequently or simultaneously during the sol-gel coating process to form hollow particles. The effects of the amount of 4VP, PVP, NH(4)OH, and tetraethoxysilane (TEOS) on both the nanocomposite particles and hollow particles were investigated. Transmission electron microscopy showed that the morphology of the nanocomposite particles and hollow particles was strongly influenced by the initial feed of the comonomer 4VP and the coupling agent PVP. The conditions to obtain all hollow particles were also studied. Thermogravimetric analysis and energy dispersive X-ray spectroscopy analyses indicated that the interiors of hollow particles were not really "hollow".  相似文献   

15.
Calcium carbonate (CaCO3)/polystyrene (PS) nanoparticles (<100 nm) with core–shell structure were synthesized by atomized microemulsion technique. The polymer chains were anchored onto the surface of nano‐CaCO3 through triethoxyvinyl silane (TEVS) as a coupling agent. Ammonium persulfate (APS), sodium dodecyl sulfate (SDS) and n‐pentanol were used as initiator, surfactant, and cosurfactant, respectively. Polymerization mechanism of core–shell latex particles was discussed. Encapsulation of nano‐CaCO3 by PS was confirmed by using transmission electron microscope (TEM). Grafting percentage of core–shell particles was investigated by Thermogravimetric Analyzer (TGA). Nano‐CaCO3/PS core–shell particles were characterized by Fourier transform infrared (FTIR) spectrophotometer and differential scanning calorimeter (DSC). The results of FTIR revealed existence of a strong interaction at the interface of nano‐CaCO3 particle and PS, which implies that the polymer chains were successfully grafted onto the surface of nano‐CaCO3 particle through the link of the coupling agent. In addition, TGA and DSC results indicated an enhancement of thermal stability of core–shell materials compared with the pure nano‐PS. Nano‐CaCO3/PS particles were blended with polypropylene (PP) matrix on Brabender Plastograph by melt process with different wt% of loading (i.e. 0.1–1 wt%). The interfacial adhesion between nano‐CaCO3 particles and PP matrix was significantly improved when the nano‐CaCO3 particles were grafted with PS, which led to increased thermal, rheological, and mechanical properties of (nano‐CaCO3/PS)/PP composites. Scanning electron microscope (SEM) and atomic force microscope (AFM) images showed a perfect dispersion of the nano‐CaCO3 particles in PP matrix. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
A novel flower-like hydrated magnesium carbonate hydroxide, Mg5(CO3)4(OH)2 · 4H2O, with micro-structure composed of individual thin nano-sheets was synthesized using a facile solution route without the use of template or organic surfactant. Reaction time has an important effect on the final morphology of the product. The micro-structure and morphology of Mg5(CO3)4(OH)2·4H2O were characterized by means of X-ray diffractometry ( XRD), fieldemission scanning electron microscopy(FE-SEM). Brunauer-Emmett-Teller(BET) surface areas of the samples were also measured. The probable formation mechanism of flower-like micro-structure was discussed. It was found that Mg5(CO3)4(OH)2·4H2O with flower-like micro-strucure was a novel and efficient catalyst for the synthesis of diphenyl carbonate (DPC) by transesterification of dimethyl carbonate (DMC) with phenol.  相似文献   

17.
The effect of supercritical CO(2) (scCO(2)) in 3D latex arrays formed by monodispersed particles of polystyrene (PS), PS cross-linked with divinylbenzene (PS-DVB), and PS block copolymers with 2-hydroxyethyl methacrylate (PS-HEMA), methacrylic acid (PS-MA), acrylic acid (PS-AA), itaconic acid (PS-IA), and a mixture of methacrylic and itaconic acid (PS-IA-MA) has been studied. Sorption of CO(2) into the polymer particles leads to a decrease in the glass transition temperature of the polymer and the swelling of the particles and induces their coalescence. 3D-latex arrays of the former compositions were treated in scCO(2) at temperatures and pressures ranging from 40 to 80 degrees C and from 85 to 197 bar, respectively. The effect of CO(2) on the polymeric template was assessed by scanning electron microscopy and N(2) adsorption analysis. Bare PS and PS-HEMA particles sintered readily in scCO(2) at 40 degrees C and 85 bar. On the other hand, particles containing carboxylic acid groups on their surface (PS-MA, PS-AA, PS-IA, and PS-IA-MA) were, at the same temperature and pressure, more resistant to the CO(2) treatment. For a given polymer composition, the sorption of CO(2) inside the polymer particles, the swelling, and the degree of coalescence depend on the pressure, temperature, and time of the CO(2) treatment. Analysis of the pore size distributions from the N(2) adsorption data has allowed us to quantify the degree of coalescence of the particles in the matrix. By careful control of the experimental variables, the coalescence of the 3D latex array could be finely tuned using CO(2).  相似文献   

18.
Al(OH)3/PMMA nanocomposites were prepared by the emulsion polymerization of methyl methacrylate (MMA) in the presence of surface‐functionalized Al(OH)3 particles. Nanosized Al(OH)3 particles were previously functionalized with a silane coupling agent, 3‐(trimethoxysilyl) propyl methacrylate (γ‐MPS), which was confirmed by FT‐IR and XRF analysis. The average size of seed particles was around 70 nm, and the density of the coupling agent on the particles was calculated to be 8.9 µmol m?2. The emulsion polymerization was attempted at relatively high solid content of 40–46 wt%. The ratio of the seed particles to MMA had a strong influence on the stability of latex as well as the morphology of composites. Nanocomposites where several PMMA nodules were attached on the surface of Al(OH)3 core were produced with stable latex emulsion when the weight percents of Al(OH)3 to MMA were below 20. In the case of higher ratio of 30%, however, the latexes became unstable with an aggregation, and the product morphology was in the shape of large composite. Thermogravimetric analysis showed an improved thermal stability of PMMA composites with the incorporation of Al(OH)3 nanoparticles. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
单分散聚丙烯酸丁酯-二氧化硅核壳粒子的制备   总被引:3,自引:0,他引:3  
近年来,有机-无机核壳材料因其具有可调的光、电、磁等特性而备受关注.无机物外壳可以增强粒子的热力学稳定性、机械强度和抗拉性能.高分子乳胶粒内核具有弹性,且易成膜,外部包覆无机物的乳胶粒可结合两者特性并产生协同效应.  相似文献   

20.
We report on the synthesis, characterization, and electrochemical application of Ca(OH)2-, Co(OH)2-, and Y(OH)3-coated Ni(OH)2 tubes with mesoscale dimensions. These composite tubes were prepared via a two-step chemical precipitation within an anodic alumina membrane under ambient conditions. The morphology and structure of the as-synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM) equipped with energy dispersive spectroscopy (EDS). The results showed that the size of the tubes was of mesoscale dimension and the proportion of the tube morphology was about 95%. The as-prepared composite tubes were further investigated as the positive-electrode materials of rechargeable alkaline batteries. Electrochemical measurements revealed that the Ni(OH)2 tubes coated with Ca(OH)2, Co(OH)2, and Y(OH)3 exhibited superior electrode properties including high discharge capacity, excellent high-temperature and high-rate discharge ability, and good cycling reversibility. The mechanism analysis suggests that both the coated layers and the unique hollow-tube structures play an indispensable role in optimizing the electrochemical performance of nickel hydroxide electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号