首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A facile method to synthesize shape-shifting patchy particles on the colloidal scale is described. The design is based on the solvent-induced shifting of the patch shape between concave and convex features. The initial concave patchy particles were synthesized in a water suspension by a swelling-induced buckling process. Upon exposure to different solvents, the patches were tuned reversibly to be either concave or convex. These particles can be assembled into chained, branched, zigzag, and cyclic colloidal superstructures in a highly site-specific manner by surface–liquid capillary bridging. The biphasic nature of the particles also enables site-selective surface functionalization.  相似文献   

2.
Anisotropic colloidal building blocks are quite attractive as they enable the self‐assembly towards new materials with designated hierarchical structures. Although many advances have been achieved in colloidal synthetic methodology, synthesis of colloidal rings with low polydispersity and on a large scale remains a challenge. To address this issue we introduce a new site‐selective growth strategy, which relies on using patchy particles. For example, by using patchy discs as templates, silica can selectively be grown on only side surfaces, resulting in formation of silica rings. We demonstrate that shape parameters are tunable and find that these silica rings can be used as secondary template to synthesize other types of rings. This method for synthesizing ring‐like colloids provides possibilities for studying their self‐assembly and associated phase transitions, and this patchy particles template strategy paves a new route for fabricating other new colloidal particles.  相似文献   

3.
In order to understand how cells respond to concave and convex subcellular surface structures,colloidal crystal array and honeycomb-structured surfaces composed of highly ordered hexagonal units with completely inverse curvature were fabricated via facile self-assembly and breath figure approaches, respectively.The influence of hexagonal surface curvature on cell fate was subsequently investigated. Cells underwent more extensive spreading on the convex colloidal crystal array surface,while adhesive forces were higher on the concave honeycomb surface.The behaviors of cells on the different surfaces were investigated by comparing cell morphology,cellular adhesive force and cytoskeleton structure.The results revealed comprehensive differences in cell behavior between those on concave honeycomb surfaces and convex colloidal crystal arrays.  相似文献   

4.
We prepared polymeric microparticles with coordinated patches using oil-in-water emulsion droplets which were stabilized by adsorbed colloidal polystyrene (PS) latex particles. The oil phase was photocurable ethoxylated trimethylolpropane triacrylate (ETPTA), and the particle-armored oil droplets were solidified by UV irradiation within a few seconds to produce ETPTA-PS composite microparticles without disturbing the structures. Large armored emulsion drops became raspberry-like particles, while small emulsion drops with a few anchored particles were transformed into colloidal clusters with well-coordinated patches. For high-molecular-weight PS particles with low chemical affinity to the ETPTA monomer, the morphology of the patchy particle was determined by the volume of the emulsion drop and the contact angle of the emulsion interface on the PS particle surface. Meanwhile, for low-molecular-weight PS particles with high affinity, the ETPTA monomers were likely to swell the adsorbed PS particles, and distinctive morphologies were induced during the shrinkage of emulsion drops and the phase separation of ETPTA from the swollen PS particles. In addition, colloidal particles with large open windows were produced by dissolving the PS particles from the patchy particles. We observed photoluminescent emission from the patchy particles in which dye molecules were dispersed in the ETPTA phase. Finally, we used Surface Evolver simulation to predict equilibrium structures of patchy particles and estimate surface energies which are essential to understand the underlying physics.  相似文献   

5.
Plateau–Rayleigh (P‐R) instability occurring on Brownian colloidal particles is presented. This instability can be used for the surface patterning of Brownian colloidal rings. This idea was realized by employing polystyrene(PS)/SiO2 core/shell rings, for which PS layer was selectively grown onto the interior surface of SiO2 rings. The P‐R instability was initiated in the ring's dispersion by adding a good solvent of PS. By using both experiments and theory, it is shown that the number of patches is tunable and that it is linearly related to a function of two variables, namely, solvent quantity and contact angle. In particular, one‐patch Janus rings and patchy disks were also synthesized at high yields. The patch size of all particles is tunable by step‐by‐step polymerization and the patches can be functionalized, for example by ATRP grafting with pH‐sensitive polymers. This approach can be adapted for the synthesis of other patchy colloids with designated complexity.  相似文献   

6.
We present the phase diagrams for neutral patchy colloidal particles whose surface is decorated by different number of identical patches, where each patch serves as an associating site. The hard-core Lennard-Jones (LJ) potential and associating interaction are incorpo-rated into the free energies of patchy particles in phases of the fluid (F), random close packing (RCP), and face-centered-cubic (FCC) crystal. A rich phase structure of patchy particles with F-F, F-RCP, and F-FCC transitions can be observed. Meanwhile, the sol-gel transition (SGT) characterizing the connectivity of patchy particles is also investigated. It is shown that, depending on the number of patches and associating energy, the F-F transition might be metastable or stable with respect to the F-RCP and F-FCC transitions. Meanwhile, the critical temperatures, critical densities, triple points, and SGT can be significantly regulated by these factors.  相似文献   

7.
In this study, we describe a new strategy for producing narrowly dispersed functional colloidal particles stabilized by a nanocomposite with hydrophilic clay faces and hydrophobic polystyrene (PS) brushes on the edges. This method involves preparation of polymer brushes on the edges of clay layers and Pickering suspension polymerization of styrene in the presence of the nanocomposites. PS brushes on the edges of clay layers were prepared by atom transfer radical polymerization. X‐ray diffraction and thermogravimetric analysis results indicated that PS chains were grafted to the edges of clay platelets. Transmission electron microscope results showed that different morphologies of clay‐PS particles could be obtained in different solvents. In water, clay‐PS particles aggregated together, in which PS chains collapsed forming nanosized hydrophobic domains and hydrophilic clay faces stayed in aqueous phase. In toluene, clay‐PS particles formed face‐to‐face structure. Narrowly dispersed PS colloidal particles stabilized by clay‐PS were prepared by suspension polymerization. Because of the negatively charged clay particles on the surface, the zeta potential of the PS colloidal particles was negative. Positively charged poly(2‐vinyl pyridine) (P2VP) chains were adsorbed to the surface of PS colloidal particles in aqueous solution at a low pH value, and gold nanoparticles were prepared in P2VP brushes. Such colloidal particles may find important applications in a variety of fields including waterborne adhesives, paints, catalysis of chemical reactions, and protein separation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1535–1543, 2009  相似文献   

8.
9.
This article reports a facile controllable approach to prepare monodisperse nonspherical colloidal particles with cavity structures by one‐pot soap‐free emulsion polymerization of styrene (St), 3‐(trimethoxysilyl)propyl methacrylate (MPS), and acrylic acid (AA). In our strategy, only by varying the feeding time of AA to the as‐polymerized St and MPS, the nonspherical latex particles with single cavity of different surface roughness and multicavity structures could be successfully synthesized. The depth and width of the cavity can be also easily controlled by adjusting the amount of MPS and AA. A possible formation mechanism is proposed on the basis of experimental results. These nonspherical colloidal particles, which have controllable cavity structures, are good building blocks or templates for the construction of functional coating and complex colloidal architectures. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1645–1652  相似文献   

10.
Polymer modifications of ultrafine monodispersed colloidal metal oxide particles, smaller than 80 nm in diameter, by the graft-polymerization of styrene to a hydrophilic macromer adsorbed on the surface were investigated. The polymerization in ethanolic silica and titania colloid solution, which had negatively larger ζ-potentials, ?30 and ?42 mV in neutral aqueous solution respectively, gave poly(styrene)–silica or titania composite, being of nonspherical shape. The modifications of colloidal particles, having lower surface energy, such as Al(OH)3 and CeO2–TiO2–SiO2 complex, led to the formation of spherical composites, ranging in size from 500 to 3000 nm, of scattered metal oxide or hydroxide particles.  相似文献   

11.
Particle shape is a critical parameter that plays an important role in self‐assembly, for example, in designing targeted complex structures with desired properties. Over the last decades, an unprecedented range of monodisperse nanoparticle systems with control over the shape of the particles have become available. In contrast, the choice of micrometer‐sized colloidal building blocks of particles with flat facets, that is, particles with polygonal shapes, is significantly more limited. This can be attributed to the fact that in contrast to nanoparticles, the larger colloids are significantly harder to synthesize as single crystals. It is now shown that a very simple building block, such as a micrometer‐sized polymeric spherical colloidal particle, is already enough to fabricate particles with regularly placed flat facets, including completely polygonal shapes with sharp edges. As an illustration that the yields are high enough for further self‐assembly studies, the formation of three‐dimensional rotator phases of fluorescently labelled, micrometer‐sized, and charged rhombic dodecahedron particles was demonstrated. This method for fabricating polyhedral particles opens a new avenue for designing new materials.  相似文献   

12.
本文提出了一种计算任意形状胶粒相互作用的新方法。把粒胶做为一个凸面体, 做出它的支持平面, 当假定两凸面体的支持平面之间的排斥能可以由经典DLVO理论计算时, 令一凸面体(或它的相似体)沿另一凸面体(或它的相似体)转动, 那么, 两凸面体胶粒之间的排斥能, 就是支持平面之间的排斥能沿凸面体(或它的相似体)的表面积分。计算结果表明, 这种方法十分简便, 又有足够高的精确度。  相似文献   

13.
Monodisperse size colloidal particles varying in chemical composition were synthesized by emulsifier‐free emulsion polymerization. Using a stress‐controlled rheometer, the rheological behavior of colloidal suspensions in a low molecular weight liquid polysulfide was investigated. All suspensions exhibited shear thinning behavior. The shear viscosity, dynamic moduli, and yield stress increased as interactions between particles and matrix increased. The rheological properties associated with network buildup in the suspensions were sensitively monitored by a kinetic recovery experiment. We propose that interfacial interactions by polar and hydrogen bonding between particles and matrix strongly promote affinity of matrix polymer to the filler particles, resulting in adsorption or entanglement of polymer chains on the filler surface. A network structure was formed consisting of particles with an immobilized polymer layer on the particle surface with each particle floc acting as a temporary physical crosslinking site. As the interfacial interaction increases, the adsorbed layer thickness on the filler particles, hence, the effective particle volume fraction, increases. As a result, the rheological properties were enhanced in the order PS < PMMA < PSVP. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 815–824, 1999  相似文献   

14.
A method for the preparation of stripe‐like monolayers of microspheroids is described. The particles were obtained from polystyrene core/polyglycidol‐rich shell microspheres by stretching poly (vinyl alcohol) films that contain embedded particles. The stretching was performed under controlled conditions at temperatures above the Tg of the films and particles. The elongated films were dissolved in water, and the microspheroids were subsequently removed and purified from the poly (vinyl alcohol). The aspect ratio (AR) of the particles, which denotes the ratio of the lengths of the longer to shorter particle axes, was determined by the film elongation. The AR values were in the range of 2.9‐7.7. Spheroidal particles with various ARs were deposited onto silicon wafers from an ethanol (EtOH) suspension. The particle concentration and volume of the suspension were the same in each experiment. Evaporation of the EtOH yielded stripes of spherical particles packed into nematic‐type colloidal crystals and assembled into monolayers. The orientation of the stripes after ethanol evaporation was perpendicular to the triphasic (silicon‐ethanol‐air) interface along the silicon substrate. The adsorbed stripes on the wafers were characterized in terms of their interstripe distance (ID), stripe width, and crystal domain size. Nematic‐type spheroid arrangements in the stripes were the dominant structure, which enabled denser packing of the particles into colloidal crystals than that allowed by the smectic‐type arrangements. Furthermore, the number of spheroids adsorbed per surface unit of the silicon wafers was similar for all ARs, but the width and frequency of the spheroid stripes adsorbed on the wafers were different.  相似文献   

15.
A colloidal particle adsorbed at a fluid interface could have an undulated, or irregular contact line in the presence of surface roughness and/or chemical inhomogeneity. The contact-line undulations produce distortions in the surrounding liquid interface, whose overlap engenders capillary interaction between the particles. The convex and concave local deviations of the meniscus shape from planarity can be formally treated as positive and negative "capillary charges," which form "capillary multipoles." Here, we derive theoretical expressions for the interaction between two capillary multipoles of arbitrary order. Depending on the angle of mutual orientation, the interaction energy could exhibit a minimum, or it could represent a monotonic attraction. For undulation amplitudes larger than 5 nm, the interaction energy is typically much greater than the thermal energy kT. As a consequence, a monolayer from capillary multipoles exhibits considerable shear elasticity, and such monolayer is expected to behave as a two-dimensional elastic solid. These theoretical results could be helpful for the understanding of phenomena related to aggregation and ordering of particles adsorbed at a fluid interface, and for the interpretation of rheological properties of particulate monolayers. Related research fields are the particle-stabilized (Pickering) emulsions and the two-dimensional self-assembly of microscopic particles.  相似文献   

16.
Stable colloidal dispersions of nanostructured semifluorinated acrylic particles with an unfluorinated core and an outer layer consisting of copolymers of the highly hydrophobic and lipophobic heptadecafluorodecyl methacrylate (FMA) were successfully synthesized with the assistance of three different cyclodextrins as phase‐transfer catalysts: β‐cyclodextrin (β‐CD), hydroxypropyl β‐cyclodextrin (HpCD), and methyl β‐cyclodextrin (MeCD). While all the cyclodextrins form a stable inclusion complex (IC) with FMA, only the ICs with the more hydrophilic HpCD and MeCD are soluble in water. Nevertheless, incorporation of FMA in the particle shell copolymer could be achieved also when using β‐CD. On the other hand, the morphology of the nanostructured particles was characterized by a “patchy” fluorinated shell dependent on the cyclodextrin used, the best results being obtained with MeCD. A monomer‐starved semicontinuous emulsion polymerization procedure was essential to favor the CD‐mediated incorporation of FMA into the copolymer structure and to achieve a stable colloidal dispersion even in the presence of small amounts of mixed anionic–nonionic surfactants. The thermal and surface properties of the latex films showed a good correlation with the shell composition and patchy nanostructured morphology of the particles. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Thermal wetting can simply, selectively and reversibly join patchy particles into clusters (2D and 3D) and also colloidal crystals over the narrow temperature range of 1–2 °C. This is demonstrated with Janus particles (gold half‐coated silica spheres) immersed in a binary mixture of water/2,6‐lutidine, such that the relative strength of gold–gold bonding through hydrophobic interaction and silica–silica bonding through the wetting‐induced attraction is reversibly switched according to temperature.  相似文献   

18.
Metal nanocrystals with concave surfaces are interesting for a wide variety of applications that are related to catalysis, plasmonics, and surface‐enhanced spectroscopy. This interest arises from their high‐index facets, surface cavities, and sharp corners/edges. Two major challenges are associated with this novel class of nanocrystals: 1) how to generate a concave surface with negative curvature, which is not favored by thermodynamics owing to its higher energy than the convex counterpart; and 2) how to stabilize the morphology of a nanocrystal with concave structures on the surface. Recently, a number of different procedures have been developed for the synthesis of noble‐metal nanocrystals with concave surfaces. This Review provides a brief account of these developments, with the aim of offering new insights into the growth mechanisms. We focus on methods based on two general strategies: 1) site‐specific dissolution through etching and galvanic replacement; and 2) directionally controlled overgrowth by facet‐selective capping, kinetic control, and template‐directed epitaxy. Their enhanced catalytic and electrocatalytic properties are also described.  相似文献   

19.
采用硅烷偶联剂4-氯苄基三氯硅烷对二氧化硅颗粒表面进行改性, 制得表面接枝氯苄基的亲油二氧化硅颗粒. 在亲油二氧化硅颗粒表面继续接枝亲水性的十二烷基咪唑, 即可制得含有离子液体基团的双亲性二氧化硅颗粒. 通过静电吸附氯铂酸和硼氢化钠还原, 可在两亲性二氧化硅颗粒表面负载铂纳米颗粒, 从而得到双亲性二氧化硅颗粒催化剂. 用扫描电镜、 透射电镜、 X射线衍射和红外光谱等对所得样品进行表征, 并以苯甲醇氧化反应为研究对象对催化剂性能进行评价, 结果显示, 使用此催化剂可使苯甲酸的产率达到90%.  相似文献   

20.
通过酯化反应合成了新型的氨基酸功能化的果胶衍生物, 通过红外光谱(FTIR)和元素分析确认了果胶衍生物的化学组成及结构, 用动态光散射(DLS)和透射电子显微镜(TEM)表征了果胶衍生物胶体的形貌和尺寸. 结果表明, 果胶衍生物胶体呈现不规则的球状结构, 粒度分布较均一, 平均粒径200 nm. 用紫外-可见(UV-Vis)光谱测试了果胶衍生物胶体对姜黄素的包裹和控制释放, 结果表明, 姜黄素能够有效被果胶衍生物胶束包裹. 体外细胞毒理实验结果表明, 果胶衍生物胶体载体能显著提高姜黄素对HepG2细胞生长的抑制作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号