首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
A new nanostructured graphene/TiO2 (G/TiO2) hybrid was synthesized by a facile microwave‐assisted solvothermal process in which amorphous TiO2 was assembled on graphene in situ. The resulting G/TiO2 hybrids were characterized by XRD, SEM, TEM, Raman spectroscopy, and N2 adsorption/desorption analysis. The electrochemical properties of the hybrids as anode materials for Shewanella‐inoculated microbial fuel cells (MFCs) were studied for the first time, and they proved to be effective in improving MFC performance. The significantly improved bacterial attachment and extracellular electron‐transfer efficiency could be attributed to the high specific surface area, active groups, large pore volume, and excellent conductivity of the nanostructured G/TiO2 hybrid, and this suggests that it could be a promising candidate for high‐performance MFCs.  相似文献   

2.
The electrode materials with hollow structure and/or graphene coating are expected to exhibit outstanding electrochemical performances in energy‐storage systems. 2D graphene‐wrapped hollow C/Fe3O4 microspheres are rationally designed and fabricated by a novel facile and scalable strategy. The core@double‐shell structure SPS@FeOOH@GO (SPS: sulfonated polystyrene, GO: graphene oxide) microspheres are first prepared through a simple one‐pot approach and then transformed into C/Fe3O4@G (G: graphene) after calcination at 500 °C in Ar. During calcination, the Kirkendall effect resulting from the diffusion/reaction of SPS‐derived carbon and FeOOH leads to the formation of hollow structure carbon with Fe3O4 nanoparticles embedded in it. In the rationally constructed architecture of C/Fe3O4@G, the strongly coupled C/Fe3O4 hollow microspheres are further anchored onto 2D graphene networks, achieving a strong synergetic effect between carbon, Fe3O4, and graphene. As an anode material of Li‐ion batteries (LIBs), C/Fe3O4@G manifests a high reversible capacity, excellent rate behavior, and outstanding long‐term cycling performance (1208 mAh g?1 after 200 cycles at 100 mA g?1).  相似文献   

3.
Magnetite (Fe3O4) nanoparticles anchored over the different active carbon supports were developed by a simple wet solution method. The developed nanostructures were magnetically self-assembled over the electrode surface and exploited as anode catalysts in mediatorless microbial fuel cells (MFC). The morphological characterizations revealed that 3~8-nm-sized Fe3O4 nanoparticles were homogeneously anchored over the different carbon matrices and the obtained diffraction patterns ensured the cubic inverse spinel structure of prepared Fe3O4 nanoparticles. The morphology, size, and structure of Fe3O4 nanoparticles anchored over the different active carbon supports were maintained identical, and the influence of active carbon support toward the effectual MFC performances was evaluated under various electrochemical regimes and conditions by using Escherichia coli as a catalytic microorganism. The electrochemical characterizations revealed that carbon nanotube (CNT)-supported Fe3O4 nanoparticles exhibited lower charge transfer resistance and high coulombic efficiency in comparison with the graphene and graphite nanofiber-supported composites. Among the studied anode catalysts, Fe3O4/CNT composite exhibited the maximum MFC power density of 865 mW m?2 associated with excellent durability performances, owing to the specific interaction exerted between the microorganisms and the Fe3O4/CNT composite. Thus, the binder-free electrode modification process, mediatorless environment, rapid electron transfer kinetics, high power generation, and long durability performances achieved for the developed system paved futuristic dimensions for the high performance MFCs.  相似文献   

4.
h‐BN, as an isoelectronic analogue of graphene, has improved thermal mechanical properties. Moreover, the liquid‐phase production of h‐BN is greener since harmful oxidants/reductants are unnecessary. Here we report a novel hybrid architecture by employing h‐BN nanosheets as 2D substrates to load 0D Fe3O4 nanoparticles, followed by phenol/formol carbonization to form a carbon coating. The resulting carbon‐encapsulated h‐BN@Fe3O4 hybrid architecture exhibits synergistic interactions: 1) The h‐BN nanosheets act as flexible 2D substrates to accommodate the volume change of the Fe3O4 nanoparticles; 2) The Fe3O4 nanoparticles serve as active materials to contribute to a high specific capacity; and 3) The carbon coating not only protects the hybrid architecture from deformation but also keeps the whole electrode highly conductive. The synergistic interactions translate into significantly enhanced electrochemical performances, laying a basis for the development of superior hybrid anode materials.  相似文献   

5.
Coating individual bacterial cells with conjugated polymers to endow them with more functionalities is highly desirable. Here, we developed an in situ polymerization method to coat polypyrrole on the surface of individual Shewanella oneidensis MR‐1, Escherichia coli, Ochrobacterium anthropic or Streptococcus thermophilus. All of these as‐coated cells from different bacterial species displayed enhanced conductivities without affecting viability, suggesting the generality of our coating method. Because of their excellent conductivity, we employed polypyrrole‐coated Shewanella oneidensis MR‐1 as an anode in microbial fuel cells (MFCs) and found that not only direct contact‐based extracellular electron transfer is dramatically enhanced, but also the viability of bacterial cells in MFCs is improved. Our results indicate that coating individual bacteria with conjugated polymers could be a promising strategy to enhance their performance or enrich them with more functionalities.  相似文献   

6.
The physicochemical properties of anode material are important for the electron transfer of anode bacteria and electricity generation of microbial fuel cells (MFCs). In this work, carbon cloth anode was pretreated with isopropanol, hydrogen peroxide (H2O2) and sodium hypochlorite (NaOCl) in order to reduce the anode functional groups. The influence of functional groups on the electrochemical properties of carbon cloth anode and power generation of MFCs was investigated. The anode pretreatments removed the surface sizing layer of carbon cloth and substantially reduced the contents of C‐O and pyridinic/pyrrolic N groups on the anode. Electrochemical impedance spectroscopy and cyclic voltammetry analyses of the biofilm‐matured anodes revealed an enhanced electrochemical electron transfer property because of the anode pretreatments. As compared with the untreated control (612 ± 6 mW m?2), the maximum power density of an acetate‐fed single‐chamber MFC was increased by 26% (773 ± 5 mW m?2) with the isopropanol treated anode. Additional treatment with H2O2 and NaOCl further increased the maximum power output to 844 ± 5 mW m?2 and 831 ± 4 mWm?2. A nearly inverse liner relationship was observed between the contents of C‐O and pyridinic/pyrrolic N groups on anodes and the anodic exchange current density and the power output of MFCs, indicating an adverse effect of these functional groups on the electricity production of anodes. Results from this study will further our understanding on the microbial interaction with carbon‐based electrodes and provide an important guidance for the modification of anode materials for MFCs in future studies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
《Electroanalysis》2018,30(3):402-414
A sensitive electrochemical immunosensor for Hepatitis B virus surface antigen (HBsAg) detection was fabricated based on hemin/G‐quadruplex interlaced onto Fe3O4‐AuNPs or hemin ‐amino‐reduced graphene oxide nanocomposite (H‐amino‐rGO‐Au). G‐quadruplex DNAzyme, which is composed of hemin and guanine‐rich nucleic acid, is an effective signal amplified tool for its outstanding peroxidase activity and Fe3O4‐AuNPs or (H‐amino‐rGO‐Au) nanocomposites with quasi‐enzyme activity provide appropriate support for the immobilization of hemin/G‐quadruplex. The target protein was sandwiched between the primary antibody immobilized on the GO and secondary antibody immobilized on the Fe3O4‐AuNPs or (H‐amino‐rGO‐Au) nanocomposites and glutaraldehyde was used as linking agent for the immobilization of primary antibody on the surface of GO. Both Fe3O4‐AuNPs and H‐amino‐rGO‐Au nanocomposite and also hemin/G‐quadruplex can cooperate the electrocatalytic reduction of H2O2 in the presence of methylene blue as mediator. The proposed immunosensor has a wide linear dynamic range of 0.1 pg/ml to 300 pg/ml with a detection limit of 60 fg/ml when Fe3O4‐AuNPs was used for immobilization of hemin/G‐quadruplex, while the dynamic range and DL were 0. 1–1000 pg/mL and 10 fg/mL, respectively in the presence of H‐amino‐rGO‐ Au nanocomposite as platform for immobilizing of hemin/G‐quadruplex. The proposed immunosensor was also used for analysis of HBsAg in spiked human serum samples with satisfactory results.  相似文献   

8.
In this paper, a novel graphene (G) grafted silica‐coated Fe3O4 nanocomposite was fabricated by the chemical bonding of G onto the surface of silica‐coated Fe3O4 nanoparticles. Some carbamates (metolcarb, carbaryl, pirimicarb, and diethofencarb) in cucumber and pear samples were enriched by this nanocomposite prior to their determination by HPLC with UV detection. Experimental parameters that may affect the extraction efficiency were investigated. Under the optimum conditions, a linear response was achieved in the concentration range of 0.5–100.0 ng/g for metolcarb, carbaryl, and diethofencarb, and 1.0–100 ng/g for pirimicarb with the correlation coefficients (r) ranging from 0.9956 to 0.9984. The LOD (S/N = 3) of the method were found to be in the range from 0.08 to 0.2 ng/g. The RSDs were in the range from 2.4 to 5.8%. The results indicated that the G grafted silica‐coated Fe3O4 nanocomposite was stable and efficient for magnetic SPE and has a great application potential for the preconcentration of other organic pollutants from real samples.  相似文献   

9.
The synthesis of nanoporous graphene by a convenient carbon nanofiber assisted self‐assembly approach is reported. Porous structures with large pore volumes, high surface areas, and well‐controlled pore sizes were achieved by employing spherical silica as hard templates with different diameters. Through a general wet‐immersion method, transition‐metal oxide (Fe3O4, Co3O4, NiO) nanocrystals can be easily loaded into nanoporous graphene papers to form three‐dimensional flexible nanoarchitectures. When directly applied as electrodes in lithium‐ion batteries and supercapacitors, the materials exhibited superior electrochemical performances, including an ultra‐high specific capacity, an extended long cycle life, and a high rate capability. In particular, nanoporous Fe3O4–graphene composites can deliver a reversible specific capacity of 1427.5 mAh g?1 at a high current density of 1000 mA g?1 as anode materials in lithium‐ion batteries. Furthermore, nanoporous Co3O4–graphene composites achieved a high supercapacitance of 424.2 F g?1. This work demonstrated that the as‐developed freestanding nanoporous graphene papers could have significant potential for energy storage and conversion applications.  相似文献   

10.
A unique hierarchically nanostructured composite of iron oxide/carbon (Fe3O4/C) nanospheres‐doped three‐dimensional (3D) graphene aerogel has been fabricated by a one‐pot hydrothermal strategy. In this novel nanostructured composite aerogel, uniform Fe3O4 nanocrystals (5–10 nm) are individually embedded in carbon nanospheres (ca. 50 nm) forming a pomegranate‐like structure. The carbon matrix suppresses the aggregation of Fe3O4 nanocrystals, avoids direct exposure of the encapsulated Fe3O4 to the electrolyte, and buffers the volume expansion. Meanwhile, the interconnected 3D graphene aerogel further serves to reinforce the structure of the Fe3O4/C nanospheres and enhances the electrical conductivity of the overall electrode. Therefore, the carbon matrix and the interconnected graphene network entrap the Fe3O4 nanocrystals such that their electrochemical function is retained even after fracture. This novel hierarchical aerogel structure delivers a long‐term stability of 634 mA h g?1 over 1000 cycles at a high current density of 6 A g?1 (7 C), and an excellent rate capability of 413 mA h g?1 at 10 A g?1 (11 C), thus exhibiting great potential as an anode composite structure for durable high‐rate lithium‐ion batteries.  相似文献   

11.
N-doped transition metal oxides are strategic materials towards the efficient oxygen reduction reaction (ORR) of microbial fuel cells (MFCs). Non-precious N-doped Fe3O4/CoO@NC−T (T represents carbonization temperature) catalysts are prepared by an efficient two-step strategy for ORR. Fe3O4/CoO@NC-750 exhibits the best performance with an efficient four-electron transfer pathway. The optimal power density of MFCs by using Fe3O4/CoO@NC-750 as the cathode catalyst (1243.4 mW ⋅ m−2) is superior to that of the MFCs with commercial Pt/C catalyst (1080 mW ⋅ m−2), which shows an outstanding activity towards ORR. No significant decrease in output voltage results over 70 days, which shows an excellent electrochemical stability.  相似文献   

12.
Advanced functional materials incorporating well‐defined multiscale architectures are a key focus for multiple nanotechnological applications. However, strategies for developing such materials, including nanostructuring, nano‐/microcombination, hybridization, and so on, are still being developed. Here, we report a facile, scalable biomineralization process in which Micrococcus lylae bacteria are used as soft templates to synthesize 3D hierarchically structured magnetite (Fe3O4) microspheres for use as Li‐ion battery anode materials and in water treatment applications. Self‐assembled Fe3O4 microspheres with flower‐like morphologies are systematically fabricated from biomineralized 2D FeO(OH) nanoflakes at room temperature and are subsequently subjected to post‐annealing at 400 °C. In particular, because of their mesoporous properties with a hollow interior and the improved electrical conductivity resulting from the carbonized bacterial templates, the Fe3O4 microspheres obtained by calcining the FeO(OH) in Ar exhibit enhanced cycle stability and rate capability as Li‐ion battery anodes, as well as superior adsorption of organic pollutants and toxic heavy metals.  相似文献   

13.
In this study, magnetite nanorods stabilized on polyaniline/reduced graphene oxide (Fe3O4@PANI/rGO) was synthesized via a wet‐reflux strategy. The possible formation of Fe3O4@PANI/rGO was morphologically and structurally verified by field emission scanning electron microscopy (FE‐SEM), Fourier transform infrared (FT‐IR) spectroscopy, Raman spectroscopy, X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). Furthermore, the thermal stability of Fe3O4@PANI/rGO was measured by a thermogravimetric analyzer (TGA); the composite had good thermal stability owing to the ceramic nature of Fe3O4. The Fe3O4@PANI/rGO has been applied as a potential sensing platform for electrochemical detection of hydrogen peroxide (H2O2). By the combined efforts of extended active surface area, active carbon support, more catalytic active sites and high electrical conductivity, the Fe3O4@PANI/rGO exhibited an improved performance toward the non‐enzymatic detection of H2O2 in 0.5 M KOH with a fast response time (5 s), high sensitivity (223.7 μA mM?1 cm?2), low limit of detection (4.45 μM) and wide linear range (100 μM–1.5 mM). Furthermore, the fabricated sensor exhibited excellent recovery rates (94.2–104.0 %) during real sample analysis.  相似文献   

14.
A facile, green and efficient method for the immobilization of MoO2–Salen onto graphene hybridized with glucose‐coated magnetic Fe3O4 nanoparticles is proposed to fabricate a magnetic organic–inorganic hybrid heterogeneous RGO/Fe3O4@C‐Salen‐MoO2 catalyst for the epoxidation of cyclooctene and geraniol using tert ‐butyl hydroperoxide or H2O2 as oxidant. Carbon‐coated Fe3O4 can improve the stability and add functional ─OH groups on the surface of Fe3O4. The fabricated composite exhibited good performance due to good dispersion of MoO2–Salen active sites. The catalyst can be easily separated from the reaction system using a permanent magnet and used three times without significantly losing its catalytic activity and selectivity.  相似文献   

15.
采用静电自组装方法,分两步合成Fe(OH)3/GO前驱体(GO:氧化石墨烯),再通过水热反应和600 ℃高纯氮气气氛下煅烧,获得了Fe3O4/石墨烯复合材料. 通过X射线衍射(XRD)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)、拉曼(Raman)光谱等多种分析,发现该复合材料具有三维多孔石墨烯网络结构. 把合成的这种Fe3O4/石墨烯复合材料作为锂离子电池负极材料,电化学测试结果表明其具有优良的电化学性能:首次放电容量为1390 mAh·g-1,50次循环后容量为819 mAh·g-1. 通过对比实验表明,三维石墨烯网络结构的形成对复合材料的电化学循环稳定性起着关键作用.  相似文献   

16.
Designed nitrogen and sulfur co‐doped graphene wrapped magnetic core‐shell supported Pd nanoparticles were synthesized through the following steps. Firstly, Fe3O4 was prepared, coated with silica and then functionalized with amine groups to create a positive charge on the structure for enhancing the interaction of the Fe3O4@SiO2 with graphene oxide. Secondary, the pre‐catalyst wrapped with graphene to enhance adsorption of aromatic substrates through π–π stacking. Thirdly, graphene was doped with nitrogen and sulfur to increase the grafting of Pd in hybrid. Finally, Pd NPs were attached on the surface of pre‐engineered structure to produce Fe3O4@SiO2@N,S‐wG@Pd which exhibited high performance in Suzuki reactions. This superior activity can be indexed to the incorporation of N and S atoms into graphene led to high anchoring and well‐dispersion of Pd NPs on the nanocomposite surface offering large amounts of active centers, that strongly increased the interaction between Pd and substrates to decreases Pd leaching.  相似文献   

17.
Fe3O4–graphene composites with three‐dimensional laminated structures have been synthesised by a simple in situ hydrothermal method. From field‐emission and transmission electron microscopy results, the Fe3O4 nanoparticles, around 3–15 nm in size, are highly encapsulated in a graphene nanosheet matrix. The reversible Li‐cycling properties of Fe3O4–graphene have been evaluated by galvanostatic discharge–charge cycling, cyclic voltammetry and impedance spectroscopy. Results show that the Fe3O4–graphene nanocomposite with a graphene content of 38.0 wt % exhibits a stable capacity of about 650 mAh g?1 with no noticeable fading for up to 100 cycles in the voltage range of 0.0–3.0 V. The superior performance of Fe3O4–graphene is clearly established by comparison of the results with those from bare Fe3O4. The graphene nanosheets in the composite materials could act not only as lithium storage active materials, but also as an electronically conductive matrix to improve the electrochemical performance of Fe3O4.  相似文献   

18.
Three‐dimensional graphene‐supported mesoporous silica@Fe3O4 composites (mSiO2@Fe3O4‐G) were prepared by modifying mesoporous SiO2‐coated Fe3O4 onto hydrophobic graphene nanosheets through a simple adsorption co‐condensation method. The obtained composites possess unique properties of large surface area (332.9 m2/g), pore volume (0.68 cm3/g), highly open pore structure with uniform pore size (31.1 nm), as well as good magnetic separation properties. The adsorbent (mSiO2@Fe3O4‐G) was used for the magnetic solid‐phase extraction of seven pesticides with benzene rings in different aqueous samples before high‐performance liquid chromatography. The main parameters affecting the extraction such as adsorbent amount, volume of elution solvent, time of extraction and desorption, salt effect, oscillation rate were investigated. Under the optimal conditions, this method provided low limits of detection (S/N = 3, 0.525–3.30 μg/L) and good linearity (5.0–1000 μg/L, R2 > 0.9954). Method validation proved the feasibility of the developed adsorbent, which has a high extraction efficiency and excellent enhancement performance for pesticides in this study. The proposed method was successfully applied to real aqueous samples, and satisfactory recoveries ranging from 77.5 to 113.6% with relative standard deviations within 9.7% were obtained.  相似文献   

19.
Facile fabrication of novel three‐dimensional anode materials to increase the bacterial loading capacity and improve substrate transport in microbial fuel cells (MFCs) is of great interest and importance. Herein, a novel graphene‐containing foam (GCF) was fabricated easily by freeze‐drying and pyrolysis of a graphene oxide–agarose gel. Owing to the involvement of graphene and stainless‐steel mesh in the GCF, the GCF shows high electrical conductivity, enabling the GCF to be a conductive electrode for MFC applications. With the aid of agarose, the GCF electrode possesses a supermacroporous structure with pore sizes ranging from 100–200 μm and a high surface area, which greatly increase the bacterial loading capacity. Cell viability measurements indicate that the GCF possesses excellent biocompatibility. The MFC, equipped with a 0.4 mm‐thick GCF anode, shows a maximum area power density of 786 mW m?2, which is 4.1 times that of a MFC equipped with a commercial carbon cloth anode. The simple fabrication route in combination with the outstanding electrochemical performance of the GCF indicates a promising anode for MFC applications.  相似文献   

20.
Magnetic zeolitic imidazolate framework 67/graphene oxide composites were synthesized by one‐pot method at room temperature for the first time. Electrostatic interactions between positively charged metal ions and both negatively charged graphene oxide and Fe3O4 nanoparticles were expected to chemically stabilize magnetic composites to generate homogeneous magnetic products. The additional amount of graphene oxide and stirring time of graphene oxide, Co2+, and Fe3O4 solution were investigated. The zeolitic imidazolate framework 67 and Fe3O4 nanoparticles were uniformly attached on the surface of graphene oxide. The composites were applied to magnetic solid‐phase extraction of five neonicotinoid insecticides in environmental water samples. The main experimental parameters such as amount of added magnetic composites, extraction pH, ionic strength, and desorption solvent were optimized to increase the capacity of adsorbing neonicotinoid insecticides. The results show limits of detection at signal‐to‐noise ratio of 3 were 0.06–1.0 ng/mL under optimal conditions. All analytes exhibited good linearity with correlation coefficients of higher than 0.9915. The relative standard deviations for five neonicotinoid insecticides in environmental samples ranged from 1.8 to 16.5%, and good recoveries from 83.5 to 117.0% were obtained, indicating that magnetic zeolitic imidazolate framework 67/graphene oxide composites were feasible for analysis of trace analytes in environmental water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号