首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《中国化学快报》2021,32(8):2499-2502
Microbial fuel cells(MFCs) have various potential applications.However,anode is a main bottleneck that limits electricity production performance of MFCs.Herein,we developed a novel anode based on a stainless steel cloth(SC) modified with carbon nanoparticles of Chinese ink(Cl) using polypyrrole(PPy)as a building block(PPy/Cl/SC).After modification,PPy/Cl/SC showed a 30% shorten in start-up time(36.4 ± 3.3 h vs.52.3± 1.8 h),33% increase in the maximum current(12.4 ± 1.4 mA vs.9.3± 0.95 mA),and2.3 times higher in the maximum power density of MFC(61.9 mW/m~2 vs.27.3 mW/m~2),compared to Ppy/SC.Experimental results revealed that carbon nanoparticles were able to cover SC uniformly,owing to excellent dispersibility of carbon nanoparticles in Cl.The attachment of carbon nanoparticles formed a fluffy layer on SC increased the electrochemically-active surface area by 1.9 times to 44.5 cm2.This enhanced electron transfer between the electrode and bacteria.Further,embedding carbon nanoparticles into the PPy layer significantly improved biocompatibility as well as changed functional group contents,which were bene ficial to bacteria adhesion on electrodes.Taking adva ntage of high mechanical strength and good conductivity,a large-size PPy/Cl/SC was successfully prepared(50×60 cm~2)demonstrating a promising potential in practical applications.This simple fabrication strategy offers a new idea of developing low cost and scalable electrode materials for high-performance energy harvesting in MFCs.  相似文献   

2.
Surface electropositivity and low internal resistance are important factors to improve the anode performance in microbial fuel cells(MFCs). Nitrogen doping is an effective way for the modification of traditional carbon materials. In this work, heat treatment and melamine were used to modify carbon felts to enhance electrogenesis capacity of MFCs. The modified carbon felts were characterized using X-ray photoelectron spectroscopy(XPS), scanning electron microscope(SEM), atomic force microscopy(AFM)and malvern zeta potentiometer. Results show that the maximum power densities under heat treatment increase from 276.1 to 423.4 m W/m~2(700 °C) and 461.5 m W/m~2(1200 °C) and further increase to472.5 m W/m~2(700 °C) and 515.4 m W/m~2(1200 °C) with the co-carbonization modification of melamine.The heat treatment reduces the material resistivity, improves the zeta potential which is beneficial to microbial adsorption and electron transfer. The addition of melamine leads to the higher content of surface pyridinic and quaternary nitrogen and higher zeta potential. It is related to higher MFCs performance. Generally, the melamine modification at high temperature increases the feasibility of carbon felt as MFCs' s anode materials.  相似文献   

3.
Metallic zinc is attractive anode material of rechargeable aqueous Zn-based batteries due to its ambient stability,high volumetric capacity,and abundant reserves.Nonetheless,Zn anodes suffer from issues such as low coulombic efficiency(CE),large polarization and dendrite formation.Herein,uniform Zn electrodeposition is reported on carbon substrates by selective nitrogen doping.Combined experimental and theoretical investigations demonstrate that pyrrolic and pyridinic nitrogen doped in carbon play beneficial effect as zinc-philic sites to direct nucleation and growth of metallic Zn,while negligible effect is observed for graphite nitrogen in Zn plating.The carbon cloth with modified amount of doped pyrrolic and pyridinic nitrogen stabilizes Zn plating/stripping with 99.3% CE after 300 cycles and significantly increases the deliverable capacity at high depth of charge and discharge compared to undoped carbon substrate and Zn foil.This work provides a better understanding of heteroatom doping effect in design and preparation of stable 3 D carbon-supported zinc anode.  相似文献   

4.
A simple, cost-effective strategy was developed to effectively improve the electron transfer efficiency as well as the power output of microbial fuel cells (MFCs) by decorating the commercial carbon paper (CP) anode with an advanced Mo2C/reduced graphene oxide (Mo2C/RGO) composite. Benefiting from the synergistic effects of the superior electrocatalytic activity of Mo2C, the high surface area, and prominent conductivity of RGO, the MFC equipped with this Mo2C/RGO composite yielded a remarkable output power density of 1747±37.6 mW m−2, which was considerably higher than that of CP-MFC (926.8±6.3 mW m−2). Importantly, the composite also facilitated the formation of 3D hybrid biofilm and could effectively improve the bacteria–electrode interaction. These features resulted in an enhanced coulombic efficiency up 13.2 %, nearly one order of magnitude higher than that of the CP (1.2 %).  相似文献   

5.
Facile fabrication of novel three‐dimensional anode materials to increase the bacterial loading capacity and improve substrate transport in microbial fuel cells (MFCs) is of great interest and importance. Herein, a novel graphene‐containing foam (GCF) was fabricated easily by freeze‐drying and pyrolysis of a graphene oxide–agarose gel. Owing to the involvement of graphene and stainless‐steel mesh in the GCF, the GCF shows high electrical conductivity, enabling the GCF to be a conductive electrode for MFC applications. With the aid of agarose, the GCF electrode possesses a supermacroporous structure with pore sizes ranging from 100–200 μm and a high surface area, which greatly increase the bacterial loading capacity. Cell viability measurements indicate that the GCF possesses excellent biocompatibility. The MFC, equipped with a 0.4 mm‐thick GCF anode, shows a maximum area power density of 786 mW m?2, which is 4.1 times that of a MFC equipped with a commercial carbon cloth anode. The simple fabrication route in combination with the outstanding electrochemical performance of the GCF indicates a promising anode for MFC applications.  相似文献   

6.
The electrodes (anode and cathode) have an important role in the efficiency of a microbial fuel cell (MFC), as they can determine the rate of charge transfer in an electrochemical process. In this study, nanoporous gold electrode, prepared from commercially available gold-made compact disk, is utilized as the anode in a two-chamber MFC. The performance of nanoporous gold electrode in the MFC is compared with that of gold film, carbon felt and acid-heat-treated carbon felt electrodes which are usually employed as the anode in the MFCs. Electrochemical surface area of nanoporous gold electrode exhibits a 7.96-fold increase rather than gold film electrode. Scanning electron microscopy analysis also indicates the homogeneous biofilm is formed on the surface of nanoporous gold electrode, while the biofilm formed at the surface of acid-heat-treated carbon felt electrode shows rough structure. Electrochemical studies show although modifications applied on carbon felt electrodes improve its performance, nanoporous gold electrode, due to its structure and better electrochemical properties, acts more efficiently as the MFC’s anode. The maximum power density produced by nanoporous gold anode is 4.71 mW m?2 at current density of 16.00 mA m?2, while this value for acid-heat-treated carbon felt anode is 3.551 mW m?2 at current density of 9.58 mA m?2.  相似文献   

7.
《Electroanalysis》2017,29(9):2036-2043
The properties of anode material are crucial for high performances in microbial fuel cells (MFCs). Herein, we report a biocompatible, conductive, and electron transfer efficient cooperative processing anode, which is fabricated by electrodepositing polypyrrole/anthraquinone‐2, 6‐disulphonic disodium salt (PPy/AQDS) onto nitric acid‐soaked carbon felt. Results showed that the cooperative processing anode outperformed the pristine one in biomass, electrical conductivity, and exchange current density with better performance between 2.4 and 3.3 times. The maximum power density (1060.3 mW m−2) of the MFC equipped with the properties hybridized anode delivered a 2.2‐fold increase over that of the control and thus has great potential to be used as an anode for high‐power MFC. Further investigation revealed that the contributions of biocompatibility (BCB), electrical conductivity (EC), and electron transfer efficiency (ETE) to the performance of carbon felt anodes appeared as cumulative effect rather than summing effect. We propose combined treatment of BCB with EC and ETE to form a properties‐hybridized anode based on thoroughly analyzing the feasibility and effectiveness, and discussed future efforts to be made for realizing more extraordinary high‐performance cooperative processing anodes. This work may also provide a novel approach for the development of other types of anode for high‐performance MFC through combined treating the BCB with EC and ETE simultaneously.  相似文献   

8.
High-performance microbial fuel cell (MFC) air cathodes were constructed using a combination of inexpensive materials for the oxygen reduction cathode catalyst and the electrode separator. A poly(vinyl alcohol) (PVA)-based electrode separator enabled high coulombic efficiencies (CEs) in MFCs with activated carbon (AC) cathodes without significantly decreasing power output. MFCs with AC cathodes and PVA separators had CEs (43%–89%) about twice those of AC cathodes lacking a separator (17%–55%) or cathodes made with platinum supported on carbon catalyst (Pt/C) and carbon cloth (CE of 20%–50%). Similar maximum power densities were observed for AC-cathode MFCs with (840 ± 42 mW/m2) or without (860 ± 10 mW/m2) the PVA separator after 18 cycles (36 days). Compared to MFCs with Pt-based cathodes, the cost of the AC-based cathodes with PVA separators was substantially reduced. These results demonstrated that AC-based cathodes with PVA separators are an inexpensive alternative to expensive Pt-based cathodes for construction of larger-scale MFC reactors.  相似文献   

9.
We report a carbon–air battery for power generation based on a solid‐oxide fuel cell (SOFC) integrated with a ceramic CO2‐permeable membrane. An anode‐supported tubular SOFC functioned as a carbon fuel container as well as an electrochemical device for power generation, while a high‐temperature CO2‐permeable membrane composed of a CO32? mixture and an O2? conducting phase (Sm0.2Ce0.8O1.9) was integrated for in situ separation of CO2 (electrochemical product) from the anode chamber, delivering high fuel‐utilization efficiency. After modifying the carbon fuel with a reverse Boudouard reaction catalyst to promote the in situ gasification of carbon to CO, an attractive peak power density of 279.3 mW cm?2 was achieved for the battery at 850 °C, and a small stack composed of two batteries can be operated continuously for 200 min. This work provides a novel type of electrochemical energy device that has a wide range of application potentials.  相似文献   

10.
In this work, a novel pyrrolic nitrogen-doped carbon sandwiched monolayer MoS2 hybrid was prepared. This sandwiched hybrid vertically anchors on graphene oxide as anode materials for sodium-ion batteries. Such electrode was fabricated by facile ionic liquid-assisted reflux and annealing methods. Owing to rational structure and enhancement from pyrrolic nitrogen dopant, this unique MoS2/C-graphene hybrid exhibits reversible specific capacity of 486 mAh g?1 after 1000 cycles with a low average fading capacity of 0.15 mAh g?1 (fading cyclic rate of ca. 0.03% per cycle). A capacity of 330 mAh g?1 is remained at the current densities of 10.0 A g?1. The proposed strategy provides a convenient way to create new pyrrolic nitrogen-doped hybrids for energy field and other related applications.  相似文献   

11.
An approach for improving the power generation of a dual-chamber microbial fuel cell by using a nanostructured polyaniline (PANI)-modified glassy carbon anode was investigated. Modification of the glassy carbon anode was achieved by the electrochemical polymerisation of aniline in 1 M H2SO4 solution. The MFC reactor showed power densities of 0.082 mW cm?2 and 0.031 mW cm?2 for the nano- and microstructured PANI anode, respectively. The results from electron microscopy scanning confirmed formation of the nanostructured PANI film on the anode surface and the results from electrochemical experiments confirmed that the electrochemical activity of the anode was significantly enhanced after modification by nanostructured PANI. Electrochemical impedance spectroscopic results proved that the charge transfer would be facilitated after anode modification with nanostructured PANI.  相似文献   

12.
《Analytical letters》2012,45(12):1645-1657
This work describes the construction of a mediatorless microbial fuel cell (MFC) using the microorganism Acetobacter aceti as the biocatalyst in the anode compartment with glucose as a fuel. The periplasmic membrane bound pyrroloquinoline quinone (PQQ) containing enzymes of these genera provide fast and highly efficient oxidation of a wide variety of substrates and helps in the direct routing of electrons to the anode. We describe our preliminary findings with regard to the use of electrochemically deposited manganese oxide films on carbon substrates as cathode materials in MFCs. Manganese oxide was electrochemically deposited on carbon paper in the presence and in the absence of the surfactant, sodium lauryl sulfate (SLS). Electrochemical characterizations of the electrodeposited films are carried out by cyclic voltammetry and impedance spectroscopy. Structural characterization of the film is carried out by XRD, XPS, and SEM. The XPS studies reveal that the presence of Mn4+ (as MnO2) in the absence of SLS and Mn3+/2+ (as Mn3O4or Mn2O3 or MnOOH) ion in the presence of SLS. The power output obtained from MnO2 cathode was 666 ± 9 mW m?3 and it is the highest value reported for MFCs with cubical configuration with the same cathode.  相似文献   

13.
Bioelectricity Production from Soil Using Microbial Fuel Cells   总被引:2,自引:0,他引:2  
Microbial fuel cells (MFCs) are a device using microorganisms as biocatalysts for transforming chemical energy into bioelectricity. As soil is an environment with the highest number of microorganisms and diversity, we hypothesized that it should have the potential for energy generation. The soil used for the study was Mollic Gleysol collected from the surface layer (0–20 cm). Four combinations of soil MFC differing from each other in humidity (full water holding capacity [WHC] and flooding) and the carbon source (glucose and straw) were constructed. Voltage (mV) and current intensity (μA) produced by the MFCs were recorded every day or at 2-day intervals. The fastest and the most effective MFCs in voltage generation (372.2?±?5 mV) were those constructed on the basis of glucose (MFC-G). The efficiency of straw MFCs (MFC-S) was noticeable after 2 weeks (319.3?±?4 mV). Maximal power density (P max?=?32 mW m?2) was achieved by the MFC-G at current density (CD) of 100 mA m?2. Much lower values of P max (10.6–10.8 mW m?2) were noted in the MFC-S at CD of ca. 60–80 mA m?2. Consequently, soil has potential for production of renewable energy.  相似文献   

14.
This objective of this study is to conduct a systematic investigation of the effects of configurations, electrolyte solutions, and electrode materials on the performance of microbial fuel cells (MFC). A comparison of voltage generation, power density, and acclimation period of electrogenic bacteria was performed for a variety of MFCs. In terms of MFC configuration, membrane-less two-chamber MFCs (ML-2CMFC) had lower internal resistance, shorter acclimation period, and higher voltage generation than the conventional two-chamber MFCs (2CMFC). In terms of anode solutions (as electron donors), the two-chamber MFCs fed with anaerobic treated wastewater (AF-2CMFCs) had the power density 19 times as the two-chamber MFCs fed with acetate (NO3 2CMFCs). In terms of cathode solutions (as electron acceptors), AF-2CMFCs with ferricyanide had higher voltage generation than that of ML-2CMFCs with nitrate (NO3 ML-2CMFCs). In terms of electrode materials, ML-2CMFCs with granular-activated carbon as the electrode (GAC-ML-2CMFCs) had a power density 2.5 times as ML-2CMFCs with carbon cloth as the electrode. GAC-ML-2CMFCs had the highest columbic efficiency and power output among all the MFCs tested, indicating that the high surface area of GAC facilitate the biofilm formation, accelerate the degradation of organic substrates, and improve power generation.  相似文献   

15.
Cost‐effective and high‐performance electrocatalysts for oxygen reduction reactions (ORR) are needed for many energy storage and conversion devices. Here, we demonstrate that whey powder, a major by‐product in the dairy industry, can be used as a sustainable precursor to produce heteroatom doped carbon electrocatalysts for ORR. Rich N and S compounds in whey powders can generate abundant catalytic active sites. However, these sites are not easily accessible by reactants of ORR. A dual‐template method was used to create a hierarchically and interconnected porous structure with micropores created by ZnCl2 and large mesopores generated by fumed SiO2 particles. At the optimum mass ratio of whey power: ZnCl2 : SiO2 at 1 : 3 : 0.8, the resulting carbon material has a large specific surface area close to 2000 m2 g?1, containing 4.6 at.% of N with 39.7% as pyridinic N. This carbon material shows superior electrocatalytic activity for ORR, with an electron transfer number of 3.88 and a large kinetic limiting current density of 45.40 mA cm?2. They were employed as ORR catalysts to assemble primary zinc‐air batteries, which deliver a power density of 84.1 mW cm?2 and a specific capacity of 779.5 mAh g?1, outperforming batteries constructed using a commercial Pt/C catalyst. Our findings open new opportunities to use an abundant biomaterial, whey powder, to create high‐value‐added carbon electrocatalysts for emerging energy applications.  相似文献   

16.
We report a prototype air‐breathing carbon cloth‐based electrode that was fabricated starting from a commercially available screen‐printed electrode equipped with a transparent ITO working electrode (DropSens, ref. ITO10). The fabrication of the air‐breathing electrodes is straightforward, shows satisfactory reproducibility and a good electrochemical response as evaluated by means of [Fe(CN)6]3?/4? voltammetry. The gas‐diffusion electrodes were successfully modified with the O2 reducing enzyme bilirubin oxidase from Myrothecium verrucaria in a direct electron transfer regime. The enzyme modified electrodes showed a remarkable high current density for O2 reduction in passive air‐breathing mode of up to 5 mA cm?2. Moreover, the enzyme modified electrodes were applied as O2 reducing biocathodes in a glucose/air enzymatic biofuel cell in combination with a high current density glucose oxidase/redox polymer bioanode. The biofuel cell provides a high maximum power density of (0.34±0.02) mW cm?2 at 0.25 V. The straightforward design, low cost and the high reproducibility of these electrodes are considered as basis for standardized measurements under gas‐breathing conditions and for high throughput screening of gas converting (bio‐)catalysts.  相似文献   

17.
The composite graphite/PTFE electrodes with a variety of PTFE contents were tested as anodes in microbial fuel cell (MFC) based on the biocatalysis of bacteria Escherichia coli (E. coli). It is shown that the PTFE content in the composite electrodes can significantly influence the efficiency of current generation of the MFCs. The composite electrodes with optimized PTFE contents, e.g., 24% to 36% (w/w), are well-suited to serve as anode of E. coli-catalyzed MFCs. In the absence of exogenous electron mediators, E. coli-catalyzed MFC with the composite anode containing 30% PTFE and a conventional air cathode exhibited a power density of 760 mW m−2, which is even much higher than those reported in the literature so far for E. coli MFCs using efficient electron mediators. These results show significant prospects for developing low cost and effective anode of MFCs.  相似文献   

18.
Nitrogen‐doped carbon materials (N‐Cmat) are emerging as low‐cost metal‐free electrocatalysts for the electrochemical CO2 reduction reaction (CO2RR), although the activities are still unsatisfactory and the genuine active site is still under debate. We demonstrate that the CO2RR to CO preferentially takes place on pyridinic N rather than pyrrolic N using phthalocyanine (Pc) and porphyrin with well‐defined N‐Cmat configurations as molecular model catalysts. Systematic experiments and theoretic calculations further reveal that the CO2RR performance on pyridinic N can be significantly boosted by electronic modulation from in‐situ‐generated metallic Co nanoparticles. By introducing Co nanoparticles, Co@Pc/C can achieve a Faradaic efficiency of 84 % and CO current density of 28 mA cm?2 at ?0.9 V, which are 18 and 47 times higher than Pc/C without Co, respectively. These findings provide new insights into the CO2RR on N‐Cmat, which may guide the exploration of cost‐effective electrocatalysts for efficient CO2 reduction.  相似文献   

19.
The Pt‐catalyzed hydrogen oxidation reaction (HOR) for alkaline polymer electrolyte fuel cells (APEFCs) has been one of the focus subjects in current fuel‐cell research. The Pt catalyst is inferior for HOR in alkaline solutions, and alloying with Ru is an effective promotion strategy. APEFCs with Pt‐Ru anodes have provided a performance benchmark over 1 W cm?2 at 60 °C. The Pt anode is now found to be in fact as good as the Pt‐Ru anode for APEFCs operated at elevated conditions. At 80 °C with appropriate gas back‐pressure, the cell with a Pt anode exhibits a peak power density of about 1.9 W cm?2, which is very close to that with a Pt‐Ru anode. Even by decreasing the anode Pt loading to 0.1 mg cm?2, over 1.5 W cm?2 can still be achieved at 80 °C. This finding alters the previous understanding about the Pt catalyzed HOR in alkaline media and casts a new light on the development of practical and high‐power APFEC technology.  相似文献   

20.
In this study, we proposed high‐performance chemically regenerative redox fuel cells (CRRFCs) using NO3/NO with a nitrogen‐doped carbon‐felt electrode and a chemical regeneration reaction of NO to NO3 via O2. The electrochemical cell using the nitrate reduction to NO at the cathode on the carbon felt and oxidation of H2 as a fuel at the anode showed a maximal power density of 730 mW cm−2 at 80 °C and twofold higher power density of 512 mW cm−2 at 0.8 V, than the target power density of 250 mW cm−2 at 0.8 V in the H2/O2 proton exchange membrane fuel cells (PEMFCs). During the operation of the CRRFCs with the chemical regeneration reactor for 30 days, the CRRFCs maintained 60 % of the initial performance with a regeneration efficiency of about 92.9 % and immediately returned to the initial value when supplied with fresh HNO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号