首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
纳米氧化钴-氧化钌复合型超级电容器的研究   总被引:1,自引:0,他引:1  
王晓峰  尤政  阮殿波 《中国化学》2006,24(9):1126-1132
A novel type of composite electrode based on sheet like cobalt oxide particles has been used in supercapacitors. Cobalt oxide cathodically deposited from Co(NO3)2 solution with carbon nanotubes as matrix exhibited large pseudo-capacitance of 322 F·g^-1 in 6 mol·L^-1 KOH. A sol-gel process for the preparation of ultrafine RuO2 particles was developed to design electrodes with large surface area. The composite electrodes were developed by the deposition of RuO: on the surface of carbon nanotubes. A specific capacitance of 785 F·g^-1 can be achieved with the 20% carbon nanotubes loaded. To characterize the metal oxide nanocomposite electrode, a cyclic voltammetry and AC impedance test are executed. This study also reports a hybrid capacitor, which consists of cobalt oxide composite as a cathode and ruthenium oxide composite as an anode. The electrochemical performance of the hybrid capacitor is characterized by a dc charge/discharge test and cyclic voltammograms. The hybrid capacitor shows capacitor behavior with an extended operating voltage of 1.4 V. The maximum energy density and specific power density of the cell reach the value of 23.7 and 8.1 kW·g^-1 respectively. The hybrid capacitor exhibits high-energy density and stable power characteristics.  相似文献   

2.
Non-precious metal nitrogen-doped carbonaceous materials have attracted tremendous attention in the field of electrochemical energy storage and conversion. Herein, we report the designed synthesis of a novel series of Co-N-C nanocomposites and their evaluation of electrochemical properties. Novel yolkshell structured Co nanoparticles@polymer materials are fabricated from the facile coating polymer strategy on the surface of ZIF-67. After calcination in nitrogen atmosphere, the Co–N–C nanocomposites in which cobalt metal nanoparticles are embedded in the highly porous and graphitic carbon matrix are successfully achieved. The cobalt nanoparticles containing cobalt metal crystallites with an oxidized shell and/or smaller(or amorphous) cobalt-oxide deposits appear on the surface of graphitic carbons. The prepared Co–N–C nanoparticles showed favorable electrocatalytic activity for oxygen reduction reactions,which is attributed to its high graphitic degree, large surface area and the large amount existence of Co–N active sites.  相似文献   

3.
The effect of oxidation pretreatment temperature(500 ~ 1 000 ℃) on the catalytic activity of Kovar applied on hydrocarbon CO2reforming was examined. Catalytic performance evaluation using tetradecane at 800 ℃ with 70 μmol/s CO2revealed 700 and 1 000 ℃ as the best pre-oxidation temperature in producing CO and H2,respectively. XRD and SEM-EDX analyses showed that a separate metal oxide layer composed of iron oxide(Fe2O3and F3O4),nickel,cobalt,and possibly their respective oxides started to form when oxidation was conducted at 700 ℃ or higher.The presence of iron enhanced the stability of nickel in the structure while the compact structure of Fe3O4resulted into the formation of a thick and rigid metal oxide layer on the surface of the Kovar tube. The strong physical bond between the metal oxide layer and Kovar tube provided the catalyst good mechanical strength and consequently good catalytic activity.  相似文献   

4.
Two series of cobalt (Ⅲ)-containing spinel catalysts were prepared by the decomposition of the corre-sponding nitrates. The catalysts doped with bismuth oxide exhibit a higher activity in the wet air oxidation ofacetic acid than those without dopant bismuth oxide. The catalysts were investigated by XRD, TEM, ESR,UV-DRS and XPS, and the interaction between Co and Bi was studied as well. It has been found that nano-sized bismuth oxide is paved on the surface of cobalt spinel crystal and the structures of cobalt(Ⅲ)-containingspinel are still maintained. The shift of the binding energy of Bi4/7/2 is related to the catalytic activity of thesecatalysts doped with bismuth oxide.  相似文献   

5.
A series of alumina supported cobalt oxide based catalysts doped with noble metals such as ruthenium and platinum were prepared by wet impregnation method.The variables studied were difference ratio and calcination temperatures.Pt/Co(10∶90)/Al2O3 catalyst calcined at 700 ℃ was found to be the best catalyst which able to convert 70.10% of CO2 into methane with 47% of CH4 formation at maximum temperature studied of 400 ℃.X-ray diffraction analysis showed that this catalyst possessed the active site Co3O4 in face-centered cubic and PtO2 in the orthorhombic phase with Al2O3 existed in the cubic phase.According to the FESEM micrographs,both fresh and spent Pt/Co(10∶90)/Al2O3 catalysts displayed small particle size with undefined shape.Nitrogen Adsorption analysis showed that 5.50% reduction of the total surface area for the spent Pt/Co(10∶90)/Al2O3 catalyst.Meanwhile,Energy Dispersive X-ray analysis(EDX) indicated that Co and Pt were reduced by 0.74% and 0.14% respectively on the spent Pt/Co(10∶90)/Al2O3catalyst.Characterization using FT-IR and TGA-DTA analysis revealed the existence of residual nitrate and hydroxyl compounds on the Pt/Co(10∶90)/Al2O3 catalyst.  相似文献   

6.
This paper studies the impact of structure of cobalt catalysts supported on carbon nanotubes(CNT) on the activity and product selectivity of Fischer-Tropsch synthesis(FTS) reaction.Three types of CNT with average pore sizes of 5,11,and 17 nm were used as the supports.The catalysts were prepared by selectively impregnating cobalt nanoparticles either inside or outside CNT.The TPR results indicated that the catalyst with Co particles inside CNT was easier to be reduced than those outside CNT,and the reducibility of cobalt oxide particles inside the CNT decreased with the cobalt oxide particle size increasing.The activity of the catalyst with Co inside CNT was higher than that of catalysts with Co particles outside CNT.Smaller CNT pore size also appears to enhance the catalyst reduction and FTS activity due to the little interaction between cobalt oxide with carbon and the enhanced electron shift on the non-planar carbon tube surface.  相似文献   

7.
A facile method is presented for preparing TiO2 /reduced graphite oxide(RGO) nanocomposites with phase-controlled TiO2 nanoparticles via redox reaction between the reductive titanium(Ⅲ) precursor and graphite oxide(GO),and a series of TiO2 /RGO composites with various TiO2 phase compositions were obtained.In all the titania/RGO composites,the TiO2 nanoparticles were uniformly distributed on the surface of the RGO.The TiO2 consisted of anatase phase particles in the form of square-plates with edges less than 10 nm and the rutile phase nanorods in diameters less than 10 nm.The performances of the as-prepared TiO2 /RGO composites were investigated on catalytically degrading phenol under visible light irradiation.The TiO2 /RGO composites can effectively degrade phenol under visible light irradiation,and the phase composition of TiO2 in the composites significantly influences the activities of these catalysts.  相似文献   

8.
The nanoporous TiO2 film electrodes have been prepared by a sol-gel deposition process The photostability of the electrodes in basic solutions has been studied. The results show that the photostability of the electrodes decreases rapidly in strong basic solutions with or without methanol. The reaction of holes to O^2- produces active O^2- atoms and the products O^2- atomsoxidize Ti^3 to Ti^4 on TiO2 film surface and subsurface. This results in the TiO2 film electrodes unstable in basic solutions both without methanol and with too low concentration.  相似文献   

9.
An extensive study of Fischer-Tropsch (FT) synthesis on cobalt nano particles supported on γ-alumina and carbon nanotubes (CNTs) catalysts is reported.20 wt% of cobalt is loaded on the supports by impregnation method.The deactivation of the two catalysts was studied at 220 C,2 MPa and 2.7 L/h feed flow rate using a fixed bed micro-reactor.The calcined fresh and used catalysts were characterized extensively and different sources of catalyst deactivation were identified.Formation of cobalt-support mixed oxides in the form of xCoO yAl2O3 and cobalt aluminates formation were the main sources of the Co/γ-Al2O3 catalyst deactivation.However sintering and cluster growth of cobalt nano particles are the main sources of the Co/CNTs catalyst deactivation.In the case of the Co/γ-Al2O3 catalyst,after 720 h on stream of continuous FT synthesis the average cobalt nano particles diameter increased from 15.9 to 18.4 nm,whereas,under the same reaction conditions the average cobalt nano particles diameter of the Co/CNTs increased from 11.2 to 17.8 nm.Although,the initial FT activity of the Co/CNTs was 26% higher than that of the Co/γ-Al2O3,the FT activity over the Co/CNTs after 720 h on stream decreased by 49% and that over the Co/γ-Al2O3 by 32%.For the Co/γ-Al2O3 catalyst 6.7% of total activity loss and for the Co/CNTs catalyst 11.6% of total activity loss cannot be recovered after regeneration of the catalyst at the same conditions of the first regeneration step.It is concluded that using CNTs as cobalt catalyst support is beneficial in carbon utilization as compared to γ-Al2O3 support,but the Co/CNTs catalyst is more susceptible for deactivation.  相似文献   

10.
Sub-micron-scaled sodium cobalt oxide (NaCo2O4) powders are prepared by a solid-state reaction method. Characterization using X-ray diffraction indicates that the synthesized NaCo2O4 has a hexagonal layered structure. The electrochemical performance of the NaCo2O4 electrodes is investigated using cyclic voltarnmetry and galvanostatic charge/discharge in NaOH solution. The results show that the specific capacitance of the NaCo2O4 electrode reaches 337 F/g over the potential range of 0.15-0.65 V at a mass normalized current of 50 mA/g. Moreover, NaCo2O4 exhibits very good stability and cycling performance as a supercapacitor material.  相似文献   

11.
采用沉淀法,选择不同的钴盐和镍盐,以草酸为沉淀剂,磷酸三钠作为形貌导向剂,分别合成了具有特殊形貌的四氧化三钴和氧化镍。并对样品进行了微观结构、形貌和光学性质的表征。结果表明:在磷酸三钠的辅助下,四氧化三钴的晶体生长沿一维方向发展,氧化镍的晶体生长沿二维方向发展。紫外光谱测试表明,磷酸三钠参与下得到的四氧化三钴和氧化镍的禁带宽均增加。  相似文献   

12.
The effects of doping cobalt oxides with different amounts of ZrO2 and ThO2 (1.5–9 mol%) on the thermal stability of Co3O4 and the re-oxidation of CoO by O2 to Co3O4 were investigated. The techniques employed were DTA, with a controlled rate of heating and cooling, X-ray diffraction, and IR spectrometry.The results obtained by DTA revealed that the addition of both Th4+ and Zr4+ (up to 6 mol%) exerted no appreciable effect on the thermal stability of Co3O4. Increasing the amount of the dopant ions to 9% resulted in no further change in the thermal stability of Co3O4 in the case of Th4+, and an increase of 16% in case of Zr4+-doping. However, ThO2-doping of cobalt oxide was accompanied by an enhancement in the reactivity of CoO towards re-oxidation by O2 to Co3O4 to an extent proportional to the amount of dopant oxide.The X-ray investigation of ZrO2-doped cobalt oxides calcined in air at 1000°C revealed the presence of highly crystalline and stable zirconia in the cubic form. Such a stable phase could not be obtained at temperatures below 2370°C in the absence of stabilizing agents.X-ray and IR investigations of different solids showed the presence of free thoria and zirconia together with new thorium—cobalt and zirconium—cobalt compounds. However, the slow cooling of Zr-treated cobalt oxides from 1000°C to room temperature led to the decomposition of the newly formed compound. The d-spacings and absorption bands of the newly formed compounds were determined.  相似文献   

13.
Iron and its binary oxides are meticulously exploited for environmental remediations. However, only limited studies have been carried out on the degradation of industrial organics by advanced oxidation process. In this study, iron oxide, cobalt oxide, and iron–cobalt binary oxides were synthesized by a modified hydrothermal method as heterogeneous Fenton-like catalysts for the removal of methylene blue (MB) from wastewaters. The oxide nanostructures were characterized by different analytical techniques. Studying the effects of various parameters such as catalyst dose, MB concentration, and H2O2 concentration, the reaction conditions were optimized to enhance the removal of MB dye. The results revealed that α-Fe2O3–Co3O4 shows much higher activity than both Co3O4 and α-Fe2O3 for the degradation of MB at room temperature and beyond. The binary α-Fe2O3–Co3O4 shows degradation efficiency of 96.4% at 65 °C within 60 min. Furthermore, the binary α-Fe2O3–Co3O4 catalyst retains its activity for up to four successive cycles. A probable mechanism is also proposed, involving the generation of ‧OH radical as well as Fe2+/Fe3+ or Co2+/Co3+ redox couple of the binary α-Fe2O3–Co3O4 catalyst.  相似文献   

14.
Only rarely have polyoxometalates been found to form core–shell nanoclusters. Here, we succeeded in isolating a series of rare giant and all-inorganic core–shell cobalt polyoxoniobates (Co−PONbs) with diverse shapes, nuclearities and original topologies, including 50-nuclearity {Co12Nb38O132}, 54-nuclearity {Co20Nb34O128}, 62-nuclearity {Co26Nb36O140} and 87-nuclearity {Co33Nb54O188}. They are the largest Co−PONbs and also the polyoxometalates containing the greatest number of Co ions and the largest cobalt clusters known thus far. These molecular Co−PONbs have intriguing and atomically precise core–shell architectures comprising unique cobalt oxide cores and niobate oxide shells. In particular, the encapsulated cobalt oxide cores with different nuclearities have identical compositions, structures and mixed-valence Co3+/Co2+ states as the different sized Co−O moieties of the bulk cubic-spinel Co3O4, suggesting that they can serve as various molecular models of the cubic-spinel Co3O4. The successful construction of the series of the Co−PONbs reveals a feasible and versatile synthetic method for making rare core–shell heterometallic PONbs. Further, these new-type core–shell bimetal species are promising cluster molecular catalysts for visible-light-driven CO2 reduction.  相似文献   

15.
Reduced graphene oxide sheets decorated with cobalt oxide nanoparticles (Co3O4/rGO) were produced using a hydrothermal method without surfactants. Both the reduction of GO and the formation of Co3O4 nanoparticles occurred simultaneously under this condition. At the same current density of 0.5 A g−1, the Co3O4/rGO nanocomposites exhibited much a higher specific capacitance (545 F g−1) than that of bare Co3O4 (100 F g−1). On the other hand, for the detection of H2O2, the peak current of Co3O4/rGO was 4 times higher than that of Co3O4. Moreover, the resulting composite displayed a low detection limit of 0.62 μM and a high sensitivity of 28,500 μA mM−1cm−2 for the H2O2 sensor. These results suggest that the Co3O4/rGO nanocomposite is a promising material for both supercapacitor and non-enzymatic H2O2 sensor applications.  相似文献   

16.
The influence of lithium oxide-doping on the thermal stability of Co3O4 was studied using DTA, TG, DTG and X-ray diffraction techniques. Pure and doped cobaltic oxide specimens were prepared by thermal decomposition of pure basic cobalt carbonate and the basic carbonate mixed with different proportions of LiOH, in air, at different temperatures between 500 and 1100°C.Pure Co3O4 was found to start partial decomposition when heated in air at 830°C yielding the CoO phase. The complete decomposition was effected by heating at 1000°C.Doping of Co3O4 with different proportions of Li2O was found to much increase its thermal stability. The temperatures at which the doped oxide samples started to undergo decomposition were increased to 865, 910 and 1050°C for 0.375, 0.75 and 3% Li2O-doped solids, respectively. The DTA revealed that the 1.5% Li2O-doped cobaltic oxide did not undergo any thermal decomposition till 1080°C. The X-ray investigation showed that the prolonged heating of 1.5 and 3% Li2O-doped solids at 1100°C for 36 h effected only a partial decomposition of Co3O4 into CoO. Heating of these solids at temperatures varying between 900 and 1100°C led also to the formation of a new lithium oxide cobaltic oxide phase, the composition of which has not yet been identified.The role of Li2O in increasing the thermal stability of Co3O4 was attributed to the substitution of some of its cobalt ions by Li+ ions, according to Verwey and De Boer's mechanism, leading to the transformation of some of the Co2+ into Co3+ ions thus increasing the oxidation state of the cobaltic oxide lattice.  相似文献   

17.
Co3O4/graphene oxide (GO) nanocomposites were successfully prepared by a depositing‐decomposition method. The as‐prepared samples were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. Cyclic voltammetry (CV) was used to evaluate the electrochemical response of a glass carbon electrode (GCE) modified with Co3O4/GO nanocomposite towards glucose. Compared with the Co3O4/GCE, the Co3O4/GO/GCE exihibits higher electrocatalytic activity due to the synergistic effects of electrocatalytic ability of Co3O4 and large surface of GO. The Co3O4/GO/GCE was applied for glucose detection in alkaline solution. The linear current response range of glucose on Co3O4/GO/GCE covered the range from 9 × 10?5 to 6.03 × 10?3 M, with a detection limit of 5.2 × 10?7 M (S/N = 3).  相似文献   

18.
Single phase ceramics of cobalt manganese oxide spinels Mn3?xCoxO4 were structurally characterized by neutron powder diffraction over the whole solid solution range. For x < 1.75, ceramics obtained at room temperature by conventional sintering techniques are tetragonal, while for x  1.75 ceramics sintered by Spark Plasma Sintering are of cubic symmetry. The unit cells, metal–metal and metal–oxygen average bonds decrease regularly with increasing cobalt content. Rietveld refinements using neutron data show that cobalt is first preferentially substituted on the tetrahedral site for x < 1, then on the octahedral site for increasing x values. Structural methods (bond valence sum computations and calculations based on Poix's work in oxide spinels) applied to our ceramics using element repartitions and [M–O] distances determined after neutron data refinements allowed us to specify the cation distributions in all phases. Mn2+ and/or Co2+ occupy the tetrahedral site while Mn3+, Co2+, CoIII (cobalt in low-spin state) and Mn4+ occupy the octahedral site. The electronic conduction mechanisms in our highly densified ceramics of pure cobalt and manganese oxide spinels are explained by the hopping of polarons between adjacent Mn3+/Mn4+ and Co2+/CoIII on the octahedral sites.  相似文献   

19.
During precipitation and calcination at 200°C nanocrystalline Co3O4 was obtained with average size crystallites of 13 nm and a well developed specific surface area of 44 m2 g?1. A small addition of a structural promoter, e.g. Al2O3, increases the specific surface area of the cobalt oxide (54 m2 g?1) and decreases the average size of crystallites (7 nm). Al2O3 inhibits the reduction process of Co3O4 by hydrogen. Reduction of cobalt oxide with aluminium oxide addition runs by equilibrium state at all the respective temperatures. The apparent activation energy of the recrystallization process of the nanocrystalline cobalt promoted by the aluminium oxide is 85 kJ mol?1. Aluminium oxide improves the thermostability of both cobalt oxide and the cobalt obtained as a result of oxide phase reduction.   相似文献   

20.
A new complex oxide with the cation ratio Ca:Co: Ga=2:0.8:1.2 has been synthesized in air at 1150oC. The cobalt atoms adopt oxidation states 2+ and 3+ in equal amounts giving an oxygen content corresponding to the composition Ca2Co0.8Ga1.2O4.8. It crystallizes in F-centered cubic structure with a=15.0558 Å. Conductivity measurements performed at high temperatures revealed that the temperature increase gives a charge disproportionation of Co3+ species resulting in a small concentration of Co4+ species and thus a small p-type conductivity in the oxide. A decrease of the oxygen pressure promotes oxygen depletion from the oxide and a deterioration of the conductivity. The electric properties are interpreted within a small polaron conduction mechanism. An unusually large mobility activation energy of 0.45 eV can be explained by a large spatial separation of cobalt cations in the structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号