首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 136 毫秒
1.
生物油酸性组分分离精制研究   总被引:10,自引:1,他引:9  
生物油因水分含量高和呈酸性未能作为高品位能源直接规模化应用。利用分子蒸馏技术将生物油水分与酸性组分作为整体对象进行分离,既得到生物油酸性组分富集馏分,又获得了水分含量低、酸性较弱与热值较高的精制生物油Ⅰ(蒸馏重质馏分)与精制生物油Ⅱ(常温冷凝馏分)。同时,具体考察了精制前后生物油的pH值、热值和水分等参数的变化规律。研究表明,生物油的水分与酸性组分得到有效分离,精制生物油Ⅰ和Ⅱ的低级羧酸含量从原始生物油的18.85%分别降低至0.96%和2.2%  相似文献   

2.
生物油中有机化合物的分析与表征   总被引:1,自引:0,他引:1  
综述了目前国内外生物油成分分析的状况,重点介绍了红外光谱、核磁共振、质谱、气相色谱、高效液相色谱技术以及波谱-色谱联用技术在生物油有机小分子化合物结构表征方面的应用,评价了这些技术在生物油结构表征方面的作用和价值,并分析了生物油的理化特性及化学结构对检测分析产生的影响。此外,对生物油中的低聚糖和热解木质素等低聚物的分析检测研究也进行了介绍。最后,总结了波谱和色谱技术在生物油检测分析方面存在的主要问题,并对生物油中有机物检测与分析的发展趋势进行了展望。  相似文献   

3.
离子交换树脂催化酯化生物油的试验研究   总被引:1,自引:0,他引:1  
生物油黏稠、稳定性差、热值低、腐蚀性强,需要进行改质与品位提升,将生物油中的有机酸通过酯化的方法转化为中性的酯类可以改善生物油的性能。实验利用模型反应,筛选出了适合于生物油体系的732型和NKC-9型两种树脂作为酯化改质的催化剂。生物油和甲醇在间歇釜内以732和NKC-9为催化剂进行改质以后,酸值分别降低了88.54%和85.95%,表明生物油中的有机酸极大地转化为中性酯类。此外,热值分别提高了32.26%和31.64%,水分分别降低了27.74%和30.87%,密度均降低了21.77%,黏度降低均接近97%。732树脂固定床催化酯化生物油后,酸值降低了92.61%。加速陈化实验和铝片腐蚀性实验结果分别表明,改质生物油的稳定性和腐蚀性能得到了改善。  相似文献   

4.
为了探究丙酮与乙酸乙酯对生物油储存特性的影响,将不同质量分数(3%、6%、9%、12%、15%)的丙酮和乙酸乙酯分别加入到生物油中,考察各组生物油理化特性随储存时间的变化。结果表明,添加丙酮和乙酸乙酯降低了生物油的含水率,且乙酸乙酯对生物油水分的降低效果优于丙酮。储存35 d后,15%乙酸乙酯组生物油的含水率为13.41%,比空白组(16.32%)降低了17.8%。加入添加剂后各组生物油的运动黏度均显著下降,与乙酸乙酯相比,丙酮对运动黏度影响较大。随着添加剂添加比例的增加,生物油运动黏度降低。储存35 d后,添加丙酮质量分数为3%、6%、9%、12%、15%的实验组生物油的运动黏度比空白组分别降低了37.20%、57.78%、71.92%、79.79%、84.67%。两种添加剂均能使生物油的pH值略微增大。红外光谱分析和气相色谱质谱联用分析显示,丙酮和乙酸乙酯抑制了生物油的老化反应。  相似文献   

5.
稻壳生物油的燃烧及污染物排放特性研究   总被引:5,自引:2,他引:3  
对稻壳生物油在空气气氛下进行了热重分析,并计算得到生物油的挥发、降解和残炭燃烧的活化能分别为63.11kJ/mol、81.01kJ/mol和161.29kJ/mol。在自砌的小型工业窑炉上开展了生物油燃烧实验,研究了生物油的点火工艺和燃烧污染物的排放规律。通过调整喷雾速度和喷嘴结构,在炉膛预热并使用明火点火源的情况下,生物油可以顺利点火。生物油燃烧容易生成CO,提高过量空气系数能有效地控制CO的生成,但同时会生成更多的NOx。在生物油中添加甲醇和乙醇助剂后,点火容易,燃烧温度提高,尾气中CO和NOx含量都一定程度的下降。  相似文献   

6.
氢气作为最理想的清洁能源之一,在石油、化工、冶金、石化、食品和化肥工业等行业中发挥着重要作用。生物油水蒸气催化重整制氢作为一种具有发展前景且经济可行的绿色制氢技术,近些年来受到了研究者的广泛关注。本工作对近年来该领域的研究进展进行综述,重点分析了生物油(生物原油、水相生物油以及重质生物油/焦油)、生物油模型化合物(羧酸类、醇类、酚类等)和其他生物油衍生物的催化重整产氢过程,包括其在重整反应机理、重整工艺以及催化剂等方面的研究进展。对多种混合模化物以及真实生物油催化重整反应机理的深入探究是目前研究的主要难点,研制节能、高效的催化重整反应器以及开发稳定、高活性的重整催化剂是目前乃至今后生物油催化重整制氢领域研究和推广的重点。  相似文献   

7.
在对松木层孔菌子实体成分分析和热重分析的基础上,通过真空裂解松木层孔菌菌渣得到裂解生物油(A),进一步通过乙酸乙酯萃取和真空旋转蒸发从裂解生物油A得到高沸点生物油(B)。运用气相色谱串联质谱技术分析了裂解生物油A和高沸点生物油B的化学成分。结果表明,松木层孔菌真空裂解反应主要发生在200~400℃。裂解生物油中含有大量低沸点化合物,主要是丙酮、醋酸、糠醛、甲醇、丙酸、乙腈等,而含有的高沸点化合物则主要是酚类和芳香类化合物。初步探讨了松木层孔菌生物油化学成分的形成。  相似文献   

8.
利用不同煤种的煤和生物油制备了不同浓度的生物油煤浆,考察了生物油煤浆的成浆浓度、表观黏度、流变特性和稳定性。结果表明,生物油煤浆是具有一定屈服应力的非牛顿流体,其流变特性可用宾汉姆方程来描述;生物油煤浆的屈服应力和表观黏度都随着固体浓度的增加而增大;随着剪切速率的增加,生物油煤浆的表观黏度减小;四种煤中,无烟煤的成浆浓度最高,可达42%,其含碳量高达49%,相当于同种煤制成的74%的水煤浆含量。烟煤次之,褐煤最低;生物油与煤粉之间能够形成絮凝性的大分子网络结构,使得生物油煤浆存在屈服应力并能够保持良好的静态稳定性,4.0~5.0 d天没有软沉淀产生,数月没有硬沉淀产生。  相似文献   

9.
固体酸改质生物油的研究   总被引:12,自引:0,他引:12  
利用乙酸和乙醇生成乙酸乙酯的酯化反应为模型反应,筛选得到催化活性最好的固体酸催化剂40%SiO2/TiO2SO42-。 在一定的反应条件下,添加固体酸催化剂和溶剂,生物油的品质得到提高,热值提高了50.7%,运动黏度降低到原来的10%,密度降低了22.6%。生物油改质前后的GC MS分析表明,固体酸可以将生物油中含有的有机羧酸转化为酯类,如甲酸酯、乙酸酯等,使生物油中的羧酸组分发生了催化酯化反应,改善了生物油的品质,生物油物理化学性能得到明显的提高。3A分子筛对生物油的脱水作用不显著,对酸性、密度、黏度等方面影响较小。  相似文献   

10.
通过改变蒸馏温度对生物油进行常压蒸馏并将馏分分为油水两相,研究了馏分的组分分布变化。结果表明,在120-300℃随着蒸馏温度的升高,生物油馏出率不断增加;蒸馏温度低于240℃的油相馏分中萘、甲苯等芳烃类化合物和乙酸等羧酸类化合物明显富集,以120℃油相馏分为例,芳烃类和羧酸类化合物的相对含量是生物油原油的13.86倍和3.15倍;当蒸馏温度高于240℃时苯酚、愈创木酚等酚类化合物大量馏出,使得油相馏分的产率明显增加;同时,所获水相馏分中的水分含量皆高于60%,水分的富集效果明显;在馏分中检测到了2-乙基乙酸丁酯和环戊酮等原油中未检测到的组分并且馏分中水分总量高于生物油原油,这些都表明生物油在蒸馏过程中发生了酯化、缩聚等化学反应。通过对油相馏分的组分分布进行分析,发现改变蒸馏温度可以有效富集生物油中的高价值化合物,如苯酚、愈创木酚、4-甲基愈创木酚、4-乙基愈创木酚和4-丙基愈创木酚的相对含量在300℃的油相馏分中分别比生物油提高了109%、160%、84%、53%和444%。  相似文献   

11.
本文回顾了生物质快速热解液化技术的国内外研究现状,重点叙述了初级生物油的化学组成和燃料性质,指出生物油是一种复杂的含氧有机混合物,具有水分含量高、氧含量高、热值低、酸含量高、安定性差和化石燃油不互溶等独特的性质;针对这些性质,介绍了几种常用的生物油精制提炼方法,包括催化裂解、催化加氢、高温热解气过滤、添加助剂、催化酯化、柴油乳化以及制备富氢合成气与费托合成,并分析了各种精制技术发展的关键问题。  相似文献   

12.
生物质快速热解制备液体燃料   总被引:2,自引:0,他引:2  
本文回顾了生物质快速热解液化技术的国内外研究现状,重点叙述了初级生物油的化学组成和燃料性质,指出生物油是一种复杂的含氧有机混合物,具有水分含量高、氧含量高、热值低、酸含量高、安定性差和化石燃油不互溶等独特的性质;针对这些性质,介绍了几种常用的生物油精制提炼方法,包括催化裂解、催化加氢、高温热解气过滤、添加助剂、催化酯化、柴油乳化以及制备富氢合成气与费托合成,并分析了各种精制技术发展的关键问题.  相似文献   

13.
Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels   总被引:2,自引:0,他引:2  
Lignocellulosic biomass is the most abundant and bio-renewable resource with great potential for sustainable production of chemicals and fuels. This critical review provides insights into the state-of the-art accomplishments in the chemocatalytic technologies to generate fuels and value-added chemicals from lignocellulosic biomass, with an emphasis on its major component, cellulose. Catalytic hydrolysis, solvolysis, liquefaction, pyrolysis, gasification, hydrogenolysis and hydrogenation are the major processes presently studied. Regarding catalytic hydrolysis, the acid catalysts cover inorganic or organic acids and various solid acids such as sulfonated carbon, zeolites, heteropolyacids and oxides. Liquefaction and fast pyrolysis of cellulose are primarily conducted over catalysts with proper acidity/basicity. Gasification is typically conducted over supported noble metal catalysts. Reaction conditions, solvents and catalysts are the prime factors that affect the yield and composition of the target products. Most of processes yield a complex mixture, leading to problematic upgrading and separation. An emerging technique is to integrate hydrolysis, liquefaction or pyrolysis with hydrogenation over multifunctional solid catalysts to convert lignocellulosic biomass to value-added fine chemicals and bio-hydrocarbon fuels. And the promising catalysts might be supported transition metal catalysts and zeolite-related materials. There still exist technological barriers that need to be overcome (229 references).  相似文献   

14.
Bio-oil has attracted considerable interest as a promising renewable energy resource because it can be utilized as a feedstock in integrated bio-refineries for the production of highly valuable chemicals and next-generation hydrocarbon fuels. However, it is necessary to improve the bio-oil quality before it can be fed to bio-refineries. Currently, catalytic vapor cracking seems a more attractive process than catalytic upgrading technologies, such as hydrotreating and esterification, in order to improve the bio-oil quality. This review presents a summary of recent research and the state of art technology for the catalytic vapor cracking of bio-oil, focusing on the catalysts applied, upgrading methods and reaction mechanisms.  相似文献   

15.
Online upgrading of organic vapors from the fast pyrolysis of biomass   总被引:1,自引:0,他引:1  
The online upgrading process that combined the fast pyrolysis of biomass and catalytic cracking of bio-oil was developed to produce a high quality liquid product from the biomass. The installation consisted of a fluidized bed reactor for pyrolysis and a packed bed reactor for upgrading. The proper pyrolysis processing conditions with a temperature of 500℃ and a flow rate of 4m3·h-1 were determined in advance. Under such conditions, the effects of temperature and weight hourly space velocity (WHSV) on both the liquid yields and the oil qualities of the online catalytic cracking process were investigated. The results showed that such a combined process had the superiority of increasing the liquid yield and improving the product quality over the separate processes. Furthermore, when the temperature was 500℃, with a WHSV of 3h-1, the liquid yield reached the maximum and the oxygenic compounds also decreased obviously.  相似文献   

16.
Fast pyrolysis of biomass is a promising process for the preparation of bio-oil dedicated to energy production. Inorganic species originally present in biomass are known to induce problems such as bio-oil instability or deposits and fouling. However the mechanisms of inorganic species release during biomass pyrolysis into the raw bio-oils still remain unclear. The present work focuses on the determination of inorganic distribution in the products from wheat straw and beech wood fast pyrolysis performed in a fluidized bed. More specifically, the bio-oils are fractionated by using a series of condensers. The results show that more than 60 wt.% of the inorganic content of the overall bio-oil is contained in the aerosols. Several possible interpretations for this observation are discussed. It is likely that the inorganics are transported within the aerosols droplets and solid particles which are recovered in the bio-oils, either by mechano-chemical processes, or by entrainment of submicron intermediate liquid compound formed in the first steps of biomass fast pyrolysis.  相似文献   

17.
Selective and economic conversion of lignocellulosic biomass components to bio‐based fuels and chemicals is the major goal of biorefineries, but low yields and selectivity for fuel precursors such as sugars, furanics, and lignin‐derived monomers pose significant disadvantages in process economics. In this Minireview we summarize the existing protection strategies used in biomass chemocatalytic conversion processes and focus the discussions on the mechanisms, challenges, and opportunities of each strategy. We introduce a concept of using analogous methods to manipulate biomass catalytic conversion pathways during the upgrading of carbohydrates to fuels and chemicals. This Minireview may provide new insights into the development of selective biorefining processes from a different perspective, expanding the options for selective conversion of biomass to fuels and chemicals.  相似文献   

18.
Conversion of non-edible biomass into fuels and value-added chemicals has achieved great attention to cope the world's energy requirements. Lignocellulose based sugar alcohols such as sorbitol, mannitol, xylitol, and erythritol can be potentially used as emerging fuels and chemicals. These sugar alcohols can be converted into widely used products(e.g. polymer synthesis, food and pharmaceuticals industry). The heterogeneous catalytic production of sugar alcohols from renewable biomass provides a safe and sustainable approach. Hydrolysis, coupled with hydrogenation and hydrogenolysis has been proved to be more effective strategy for sugar alcohols production from biomass. This review summarizes the recent advances in biomass upgrading reactions for the production of sugar alcohols and their comprehensive applications.  相似文献   

19.
Microwave assisted catalytic pyrolysis was investigated to convert Douglas fir pellets to bio-oils by a ZSM-5 zeolite catalyst. A central composite experimental design (CCD) was used to optimize the catalytic pyrolysis process. The effects of reaction time, temperature and catalyst to biomass ratio on the bio-oil, syngas, and biochar yields were determined. GC/MS analysis results showed that the bio-oil contained a series of important and useful chemical compounds. Phenols, guaiacols, and aromatic hydrocarbons were the most abundant compounds which were about 50–82% in bio-oil depending on the pyrolysis conditions. Comparison between the bio-oils from microwave pyrolysis with and without catalyst showed that the catalyst increased the content of aromatic hydrocarbons and phenols. A reaction pathway was proposed for microwave assisted catalyst pyrolysis of Douglas fir pellets.  相似文献   

20.
This study was aimed to understand the physical and chemical properties of pyrolytic bio-oils produced from microwave pyrolysis of corn stover regarding their potential use as gas turbine and home heating fuels. The ash content, solids content, pH, heating value, minerals, elemental ratio, moisture content, and viscosity of the bio-oils were determined. The water content was approx 15.2 wt%, solids content 0.22 wt%, alkali metal content 12 parts per million, dynamic viscosity 185 mPa.s at 40 degrees C, and gross high heating value 17.5 MJ/kg for a typical bio-oil produced. Our aging tests showed that the viscosity and water content increased and phase separation occurred during the storage at different temperatures. Adding methanol and/or ethanol to the bio-oils reduced the viscosity and slowed down the increase in viscosity and water content during the storage. Blending of methanol or ethanol with the bio-oils may be a simple and cost-effective approach to making the pyrolytic bio-oils into a stable gas turbine or home heating fuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号