首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collagen, the most abundant protein in human body, has been widely used as an excellent natural material for diverse biomedical applications due to its superior properties such as ample biological interaction sites, minimal immunogenicity and high biocompatibility. Collagens of different lengths are produced by recombinant technology and utilized to functionalize fluorescent silica nanoparticles (FNPs). The collagen‐functionalized FNPs display mono‐disperse distribution, but their sizes are dependent on the length of collagen. These modified FNPs all show nice fluorescence profile as well as low cytotoxicity, suggesting promising applications in bioimaging. We have demonstrated that various types of collagen, conveniently produced by recombinant technology, can be used to modify silica nanoparticles with nice characteristics such as mono‐dispersion, non‐interference in fluorescence and low toxicity. It may endow fluorescent silica nanoparticles with broad biological applications.  相似文献   

2.
Fluorescent nanoparticles (FNPs) are obtained in water by self‐assembly from a polymeric ionic liquid, fluorescent carboxylate moiety, and a surfactant through two main supramolecular interactions, that is, ionic bonds and hydrophobic/hydrophilic interactions. The hydrophobicity of the surfactant is tunable and a highly hydrophobic surfactant increases the fluorescence intensity and stability of the FNPs. The fluorescence of the FNPs is sensitive to a quenching effect by various ions with high selectivity, and consequently, they may be used as sensors. The self‐assembly approach used to generate the FNPs is considerably simpler than other methods based on more challenging synthetic methods and the flexibility of the approach should allow a wide and diverse range of FNPs to be prepared with specific sensor applications.  相似文献   

3.
New types of fluorescent nanoparticles (FNPs) were prepared through ionic self-assembly of anthracene derivative and chitosan for applications as drug delivery carriers with real-time monitoring of the process of drug release. Because of the presence of the hydrophilic groups, these FNPs showed excellent dispersion and stability in aqueous solution. The structure and properties of the FNPs were investigated by using means of (1)H NMR, FTIR, SEM, dynamic light scattering (DLS), and so on. The potential practical applications as drug delivery carriers for real-time detection of the drug release process were demonstrated using Nicardipine as a model drug. Upon loading the drug, the strong blue fluorescence of FNPs was quenched due to electron transfer and fluorescence resonance energy transfer (FRET). With release of drug in vitro, the fluorescence was recovered again. The relationship between the accumulative drug release of FNPs and the recovered fluorescence intensity has been established. Such FNPs may open up new perspectives for designing a new class of detection system for monitoring drug release.  相似文献   

4.
Fluorescent nanoparticles (FNPs) with unique optical properties may be useful as biosensors in living cancer cell imaging and cancer targeting. A novel kind of polymer fluorescent nanoparticles (PFNPs) was synthesized and its application for ovarian cancer imaging with fluorescence microscopy imaging technology was presented in this study. The PFNPs were synthesized with precipitation polymerization by using methacrylic acid (MAA) as monomer, trimethylolpropane trimethacrylate (Trim) as cross-linker, azobisisobutyronitrile (AIBN) as radical initiator and butyl rhodamine B (BTRB) as fluorescent dye. And the fluorescent dye was embedded into the three-dimensional network of the polymer when the polymer was produced. With this method the PFNPs can be prepared easily. And then the PFNPs were successfully modified with anti-Her-2 monoclonal antibody. The fluorescence probe based on anti-Her-2 monoclonal antibody conjugated PFNPs has been used to detect ovarian cancer cells with fluorescence microscopy imaging technology. The experimental results demonstrate that the anti-Her-2 monoclonal antibody conjugated PFNPs can effectively recognize ovarian cancer cells and exhibit good sensitivity and exceptional photostability, which would provide a novel way for the diagnosis and curative effect observation of ovarian cancer cells.  相似文献   

5.
We report the synthesis, characterization, and photophysical properties of novel metal oxide nanoparticles (NPs) coated with specially designed fluorescein substituents which are capped with electron-withdrawing groups. The fluorescein-coated nanoparticles were synthesized in excellent yields, and their structures were confirmed using various advanced spectroscopic, instrumental, and surface analysis techniques, revealing the formation of the target functionalized nanoparticles (FNPs) which show superior chemical and thermal stabilities. In addition, the photophysical properties of the FNPs were examined using UV-visible absorption and fluorescence spectroscopy. These latter techniques disclosed aggregation-induced emission (AIE) properties for most of the target FNPs, namely those which are soluble in common organic solvents at selective concentration ranges of water fractions in the solvent mixture.  相似文献   

6.
A novel type of multivalent and highly specific fluorescent hyperbranched glycopolymers h‐P(GalEA‐co‐VBPT‐co‐BYMA) (hPGVB) is designed and prepared successfully via a facile “bottom‐up” strategy. The acetylated hPGVB is prepared by one‐pot reversible addition‐fragmentation chain transfer (RAFT) copolymerization of acrylate‐type galactose monomers AcGalEA and methacrylate‐type fluorescent monomers BYMA in presence of an inimer‐type RAFT chain transfer agent. After deacetylation, the resulting amphiphilic hPGVB can self‐assemble into stable nanoparticles in aqueous media, showing strong green fluorescence with relative high quantum yields and good photostability. The cell viability study indicates the excellent biocompatibility of the hPGVB fluorescent nanoparticles (FNPs) against HepG2 and NIH3T3 cells. More importantly, comparing with the galactose‐free fluorescent hyperbranched polymers h‐P(OEGMA‐co‐VBPT‐co‐BYMA), hPEVB FNPs can be selectively internalized by asialoglycoprotein (ASGP) receptor‐rich HepG2 cells, indicating their potential application in the bioimaging fields.  相似文献   

7.
Driven by the high demand for sensitive and specific tools for optical imaging, fluorescent nanoprobes with various working mechanisms and advanced functionalities are flourishing at an incredible speed. This work reports the design and fabrication of aggregation‐induced emission (AIE)‐active fluorescent organic nanoparticles (FNPs) via forming dynamic phenyl borate between diol containing hydrophobic AIE dye (APD‐PhCHO) and phenylboronic acid pendant hydrophilic polymers (PEGMA‐VPBA) within 30 min. The final AIE‐active APD‐PhCHO‐PEGMA‐VPBA FNPs display high water dispersibility and strong fluorescence emission because of their amphiphilic properties and AIE feature. Biological evaluation suggests that APD‐PhCHO‐PEGMA‐VPBA FNPs possess negative effect on HeLa cells and desirable optical properties for biological imaging. More importantly, phenyl borate is a dynamic bond with pH and glucose responsiveness. Furthermore, different functions can be designed and introduced into these AIE‐active systems through adoption of different monomers for good applicability of free radical polymerization. Therefore, this work provides a novel platform for preparation of multifunctional AIE‐active nanosystems with responsiveness for various biomedical applications.

  相似文献   


8.
以N-(p-Maleimidophenyl)isocyanate(PMPI)为交联剂, 将线粒体信号肽分子共价修饰到二氧化硅荧光纳米颗粒表面, 构建线粒体信号肽功能化二氧化硅荧光纳米颗粒. 采用荧光分光光度计、Zeta电位仪以及透射电子显微镜对修饰前后的二氧化硅纳米颗粒进行了表征. 结果表明, 信号肽可被成功修饰在纳米颗粒表面, 并且纳米颗粒粒径在信号肽分子修饰前后没有发生明显变化. 以分离纯化的细胞核作为对照, 采用流式细胞术考察了信号肽功能化二氧化硅荧光纳米颗粒与分离纯化后的线粒体的相互作用. 结果表明, 线粒体信号肽修饰到二氧化硅纳米颗粒表面后依然保持良好的生物活性, 能够介导二氧化硅纳米颗粒特异性识别及结合分离纯化的线粒体, 从而为线粒体监测及其功能调控研究提供了新的思路.  相似文献   

9.
A method is presented for the preparation of a biocompatible ferrofluid containing dye-functionalized magnetite nanoparticles that can serve as fluorescent markers. This method entails the surface functionalization of magnetite nanoparticles using citric acid to produce a stable aqueous dispersion and the subsequent binding of fluorescent dyes to the surface of the particles. Several ferrofluid samples were prepared and characterized using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), BET surface area analysis, transmission electron microscopy (TEM), and SQUID magnetometry. In addition, confocal fluorescence microscopy was used to study the response of the fluorescent nanoparticles to an applied magnetic field and their uptake by cells in vitro. Results are presented on the distribution of particle sizes, the fluorescent and magnetic properties of the nanoparticles, and the nature of their surface bonds. Biocompatible ferrofluids with fluorescent nanoparticles enable optical tracking of basic processes at the cellular level combined with magnetophoretic manipulation and should be of substantial value to researchers engaged in both fundamental and applied biomedical research.  相似文献   

10.
陈小兰  邹健莉  赵婷婷  黎中宝 《分析化学》2006,34(11):1611-1614
首次制备出红区荧光染料四羧基铝酞菁掺杂的二氧化硅纳米粒子,并对其进行了表征。将环己烷、正己醇和表面活性剂Triton X-100按一定体积比(12.3∶1.04∶1)混合均匀,形成清澈透明的溶液;将适量的四羧基铝酞菁溶解到浓氨水中,加入到上述混合溶液中,形成反向胶束。搅拌10 m in后加入一定量的四乙氧基硅烷,加快搅拌速度,促使四乙氧基硅烷进入反相胶束中的“纳米水池”,在碱性条件下,四乙氧基硅烷水解形成二氧化硅纳米粒子。采用该方法制备的核壳荧光纳米颗粒荧光稳定性强,生物相容性高,抗干扰能力强。将一定量四羧基铝酞菁掺杂的二氧化硅纳米粒子溶于水溶液中,随溶液pH值的增加,荧光强度增强,并在pH 5.02~11.98的范围内,荧光强度与溶液酸度有良好的线性关系。该法已成功地用于自来水和模拟生物体系中pH的测定。预期该技术有望用于细胞内H 的实时监测。  相似文献   

11.
新型有机荧光染料嵌合的核壳荧光纳米材料的研制   总被引:15,自引:0,他引:15  
采用油包水的反相微乳液方法,首次以羊抗人免疫球蛋白(IgG)标记的异硫氰酸荧光素(FITC)为核材料,成功地制备了FITC的核壳荧光纳米颗粒,克服了采用传统方法制备核壳荧光纳米颗粒中存在的荧光染料泄露的问题.制备的这种核壳荧光纳米颗粒比细胞小很多,且具有生物亲和性,可为纳米生物传感器件提供新型材料.基于该核壳荧光纳米颗粒的标记方法也为生物医学提供了一种新型的非同位素分析方法.  相似文献   

12.
Bifunctional nanoparticles with highly fluorescence and decent magnetic properties have been widely used in biomedical application. In this study, highly fluorescent magnetic nanoparticles (FMNPs) with uniform size of ca. 40 nm are prepared by encapsulation of both magnetic nanoparticles (MNPs) and shell/core quantum dots (QDs) with well-designed shell structure/compositions into silica matrix via a one-pot reverse microemulsion approach. The spectral analysis shows that the FMNPs hold high fluorescent quantum yield (QY). The QYs and saturation magnetization of the FMNPs can be regulated by varying the ratio of the encapsulated QDs to MNPs. Moreover, the surface of the FMNPs can be modified to offer chemical groups for antibody conjugation for following use in target-enrichment and subsequent fluorescent detection. The in vitro immunofluorescence assay and flow cytometric analysis indicate that the bifunctional FMNPs-antibody bioconjugates are capable of target-enrichment, magnetic separation and can also be used as alternative fluorescent probes on flow cytometry for biodetection.  相似文献   

13.
以蛋白质或多肽修饰的吲哚类菁染料Cy3为内核, 采用实验条件简单的油包水反相微乳液方法成核, 通过正硅酸乙酯水解形成的网状二氧化硅包壳的方法制备吲哚类菁染料Cy3嵌入的核壳荧光纳米颗粒. 考察了以不同等电点的蛋白质和多肽修饰的Cy3为内核材料对吲哚类菁染料Cy3嵌入的核壳荧光纳米颗粒制备的影响. 结果表明, 分别采用人免疫球蛋白(IgG)或多聚赖氨酸修饰的Cy3为内核材料, 都能制备荧光强度高、荧光稳定性强和染料泄漏极少的Cy3嵌入的核壳荧光纳米颗粒. 进一步对Cy3嵌入的核壳荧光纳米颗粒进行了表征, 并将基于这一新型的荧光纳米颗粒建立起来的生物标记方法初步应用于流感病毒DNA的检测, 其检测线性范围为3.18×10-10~1.27×10-9 mol/L, 检测下限为3.51×10-10 mol/L, 相关系数r为0.986 5.  相似文献   

14.
In this study, the new nanometer-sized fluorescent particles (1-pyrenemethylamine nanoparticles) have been prepared by reprecipitation method under ultrasonic radiation. These nanoparticles have the potential to overcome problems encountered by organic small molecules by combining the advantages of high photobleaching threshold, high quantum yield, long fluorescence lifetime, good chemical stability, and wide excitation spectral properties. These nanoparticles will be able to be directly used as fluorescent nanoparticles probe without modification. A new fluorimetric method for the determination of reduced glutathione (GSH) has been developed with these nanoparticles. Under optimal conditions, the organic nanoparticles reacted with GSH and o-phthalaldehyde (OPA) to give a highly fluorescent derivative in Na2CO3-HCl buffer (pH=9.0). The fluorescence excitation and emission wavelengths of fluorescent derivative were located at 345 and 400 nm, respectively. The relative fluorescence intensity (RF) was linear in the range of the GSH concentration from 8.0x10(-7) to 1.1x10(-4)moll(-1). Limit of detection of 7.1x10(-8)moll(-1) was achieved for the reduced glutathione. The method was validated and applied to the analysis of three synthetic samples containing reduced glutathione.  相似文献   

15.
It is shown that fluorescent dyes can be adsorbed selectively on gold nanoparticles which are immobilized on a glass substrate and that the fluorescence originating from the adsorbed dyes exhibits significantly less quenching when compared to dyes adsorbed on bulk gold. Self-assembled monolayers of lissamine sulfide molecules have been studied both on bulk gold and on glass surfaces bearing gold nanoparticles. Gold nanoparticles have been arranged in ordered, two-dimensional patterns, with periodicity in the microm range and used as substrate for the fluorescent dyes. Optical resolution of the fluorescence originating from the pattern has been achieved with laser-scanning confocal microscopy.  相似文献   

16.
Oils containing both fluorescent semiconductor and magnetic oxide nanoparticles are used to produce oil in water emulsions. This technique produces oil droplets with homogeneous fluorescence and high magnetic nanoparticle concentrations. The optical properties of the oil droplets are studied as a function of the droplet sizes for various concentrations of fluorescent and magnetic nanoparticles. For all concentrations tested, we find a linear variation of the droplet fluorescent intensity as a function of the droplet volume. For a given size and a given quantum dot (QD) concentration, the droplet fluorescence intensity drops sharply as a function of the magnetic nanoparticle concentration. We show that this decrease is due mainly to the strong absorption cross section of the magnetic nanoparticles and to a lesser extent to the dynamic and static quenching of the QD fluorescence. The role of the iron oxide nanoparticle localization in the droplet (surface versus volume) is also discussed.  相似文献   

17.
聚合物纳米粒子的结构和性能对胞吞和细胞功能的影响   总被引:2,自引:0,他引:2  
胡玲  张裕英  高长有 《化学进展》2009,21(6):1254-1267
随着纳米医学的发展,越来越多的聚合物纳米粒子被用作荧光探针和药物或基因的载体,在生物分析、检测以及药物传输和基因治疗等领域得到应用。细胞的胞吞是细胞将细胞外基质、病毒、微组织或纳米粒子运送到细胞内部的一个重要生理过程。研究细胞对纳米粒子的胞吞,有助于从细胞层次上理解生命现象,掌握细胞内治疗的机理。本文综述了近几年来细胞和聚合物纳米粒子之间相互作用的最新研究结果。首先介绍了用于胞吞研究的常用聚合物纳米粒子体系及其功能化方法,尤其是荧光探针的复合与表面修饰。进而介绍了细胞和聚合物纳米粒子之间相互作用的基本过程,包括聚合物纳米粒子在细胞转运过程中的驱动力、细胞内转运过程、在细胞中的分布及其细胞毒性。对影响聚合物纳米微粒胞吞的因素如纳米粒子浓度、共培养时间、纳米粒子性能(形状、粒径、电荷和PEG修饰)、细胞类型和培养条件等进行了总结。最后重点介绍了用于受体介导细胞胞吞的聚合物纳米粒子体系,指出了目前研究工作中的不足及未来发展方向。  相似文献   

18.
The design of two-dyed fluorescent silica nanoparticles for ATP detection is presented. The indicator dye possesses a dipicolyl-amine (DPA) unit complexed with Zn(II) as a receptor function for ATP while a rhodamine derivative is used as the reference dye. The nanoparticles were fully characterized regarding analytical performance, morphology and cytocompatibility.  相似文献   

19.
Bio-functioned fluorescent silica nanoparticles have been synthesized for cell labeling and cell differentiation and have shown great promise as novel fluorescent probes. The galactose-conjugated fluorescent nanoparticles (GCFNPs) have been obtained by the conjugation of amino-modified fluorescent silica nanoparticles with lactobionic acid (LA) through EDAC linkage. The GCFNPs retain excellent biological activity and can be used in bioanalysis as an immunofluorescence assay. The specific identification of target cells from the background cells have been directly demonstrated in a simple model system by a laser confocal scanning microscope, because the specific and non-specific labeling can simultaneously visualized in a given microscopic field of view. The flow cytometric analysis has proved that GCFNPs can effectively recognize target cells in the mixed cell system. The demonstration of precise identification of few liver cancer cells in the blood confirmed the excellent capability of GCFNPs in identifying specific cells in a large host cell background. The nanoparticle's excellent photostability, good biocompatibility and significant signal amplification make them well-suited for the identification of individual cells sensitively for a variety of biomedical studies such as cancer metastasis and stem cell progeny in vivo.  相似文献   

20.
Long YM  Zhao QL  Zhang ZL  Tian ZQ  Pang DW 《The Analyst》2012,137(4):805-815
Fluorescent nanoparticles have attracted much attention over the last two decades. Due to the size- and composition-dependent optical and electrical properties, fluorescent nanoparticles have been emphasized in electronic, optical and biomedical applications. Till now, many kinds of methods have been developed to fabricate diverse fluorescent nanoparticles, which include pyrolysis, template synthesis, hydrothermal synthesis, microemulsion, electrochemical methods and so on. Among them, electrochemical methods are favored for relatively good controllability, ease of operation and mild reaction conditions. By adjusting the applied potential, current, components of the electrolyte and other relevant parameters, the fluorescent nanoparticles could be electrochemically manufactured with tunable sizes, compositions and surface structure, which allows for the modification of electronic and optical properties. Therefore, electrochemical methods are regarded as important means in preparing fluorescent nanoparticles. This review focuses on the recent progress in electrochemical fabrications of fluorescent nanoparticles (together with their optical properties and some applications in optoelectronics and biomedicine).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号