首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Catalytic activity of mixed Ni?Fe oxide systems with respect to air oxidation of aqueous cyanide solution at 308 K was investigated. The catalysts employed were prepared by an oxidation-precipitation method at room temperature and were characterized by powder X-ray diffraction (XRD), Mössbauer spectroscopy, and chemical analysis. The cyanide oxidation rate was found to be dependent on the catalyst's calcination temperature, pH of the medium, and catalyst loading. Results revealed that the catalyst calcined at 120°C is the most active where up to 90% of free cyanide (4 mM) was removed after oxidation for 30 minutes in the presence of 2.5 g/L catalyst at pH 9.5. The cyanide conversion becomes less favorable as the pH of the solution increases (with other constant parameters). The selectivity data showed that carbon dioxide is the main oxidation product, regardless of pH of the solution.  相似文献   

2.
The coagulation rate constant of submicron silica has been measured as a function of solution pH, salt concentration and hydroxypropyl cellulose (HPC) polymer concentration. Results show that the colloidal stability of silica is dominated by the cation concentration in the presence of salt in the pH range 3–9.5. The stability increases as cation concentration decreases. At low salt concentration and a minimum colloid stability was found in the intermediate pH range 4–8. These results show that differences in the literature values of the critical coagulation constant by relative light-scattering experiments can be explained by the use of the coagulation rate constant analysis. When HPC polymer was present in the solution, the colloid stability of the silica increased. The adsorption of polymer stabilizes the silica suspensions, both at low pH near the isoelectric point and at high ionic strength where it coagulates without the polymer. A monolayer coverage was necessary to provide steric stabilization. At 10–3 M KCl a smaller equilibrium concentration of HPC in solution is needed to give monolayer coverage and steric stabilization than at 1 M KCl and pH 4.2.  相似文献   

3.
Some investigations concerning the decolorization of Acid Red G azo dye by photooxidation with hydrogen peroxide were performed. The influences of pH, oxidant concentration, and the presence of Fe2+ or other metal ions (Co2+, Cu2+, Ni2+, Mn2+) as potential catalysts, were investigated. The best results were obtained in the presence of ferrous ions in acid and neutral media. The other ions are not as effective as Fe2+ for dye decolorization. Co2+ and Cu2+ ions have a catalytic action, at low concentration, within a wide range of pH. Ni2+ and Mn2+ ions have no catalytic effect in photooxidation with hydrogen peroxide at acid Ni2+ and Mn2+ ions have no catalytic effect in photooxidation with hydrogen peroxide at acid pH values, but show a weak action in alkaline media.  相似文献   

4.
Chemical modification was evaluated to stabilize pig kidney d-amino acid oxidase (pkDAAO), which is required for analytical determination of d-amino acids. Optimization of modification conditions was performed to obtain high recovery yield and stability, and chemical modification at 30°C for 12 h with a highly concentrated enzyme solution gave dextran-conjugated pkDAAO with a 70% yield of activity. pkDAAO was stable at less than 55°C at pH 6.0, while the conjugated enzyme was stable even at 70°C. In addition, the conjugated enzyme showed decreased K m values for d-amino acids. Because of these outstanding charcteristics, this new material is expected to be available for use as a liquid assay reagent.  相似文献   

5.
Actinobacillus succinogenes 130 Z was used to produce succinic acid from cheese whey in this study. At the presence of external CO2 supply, the effects of initial cheese whey concentration, pH, and inoculum size on the succinic acid production were studied. The by-product formation during the fermentation process was also analyzed. The highest succinic acid yield of 0.57 was obtained at initial cheese whey concentration of 50 g/L, while the highest succinic acid productivity of 0.58 g h−1 L−1 was obtained at initial cheese whey concentration of 100 g/L. Increase in pH and inoculum size caused higher succinic acid yield and productivity. At the preferred fermentation condition of pH 6.8, inoculum size of 5% and initial cheese whey concentration of 50 g/L, succinic acid yield of 0.57, and productivity of 0.44 g h−1 L−1 were obtained. Acetic acid and formic acid were the main by-products throughout the fermentation run of 48 h. It is feasible to produce succinic acid using lactose from cheese whey as carbon resource by A. succinogenes 130 Z.  相似文献   

6.
The ice/water interface is a common and important part of many biological, environmental, and technological systems. In contrast to its importance, the system has not been extensively studied and is not well understood. Therefore, in this paper the properties of the H2O ice/water and D2O ice/water interfaces were investigated. Although the zeta potential vs pH data points were significantly scattered, it was determined that the isoelectric point (iep) of D2O ice particles in water at 3.5°C containing 10−3 M NaCl occurs at about pH 3.0. The negative values of the zeta potential, calculated from the electrophoretic mobility, seem to decrease with decreasing content of NaCl, while the iep shifts to a higher pH. The point of zero charge (pzc) of D2O ice and H2O ice, determined by changes in pH of 10−4 M NaCl aqueous solution at 0.5°C after the ice particle addition, was found to be very different from the iep and equal to pH 7.0 ± 0.5. The shift of the iep with NaCl concentration and the difference in the positions of the iep and pzc on the pH scale point to complex specific adsorption of ions at the interface. Interestingly, similar values of iep and pzc were found for very different systems, such as hydrophilic ice and highly hydrophobic hexadecane droplets in water. A comparison of the zeta potential vs pH curves for hydrophilic ice and hydrophobic materials that do not possess dissociative functional groups at the interface (diamond, air bubbles, bacteria, and hexadecane) indicated that all of them have an iep near pH 3.5. These results indicate that the zeta potential and surface charge data alone cannot be used to delineate the electrochemical properties of a given water/moiety interface because similar electrical properties do not necessary mean a similar structure of the interfacial region. A good example is the aliphatic hydrocarbon/water interface in comparison to the ice/water interface. Although the experiments were carried out with care, both the zeta potential, measured with a precise ZetaPlus meter, and ΔpH values (a measure of surface charge) vs pH were significantly scattered, and the origin of dissemination of the data points was not established. Differently charged ice particles and not fully equilibrium conditions at the ice/water interface may have been responsible for the dissemination of the data.  相似文献   

7.
The aim of this work was to characterize an exopolysaccharide by Rhodotorula glutinis KCTC 7989 and to investigate the effect of the culture conditions on the production of this polymer. The extracellular polysaccharide (EPS) produced from this strain was a novel acidic heteropolysaccharide composed of neutral sugars (85%) and uronic acid (15%). The neutral sugar composition was identified by gas chromatography as mannose, fucose, glucose, and galactose in a 6.7:0.2:0.1:0.1 ratio. The molecular weight of purified EPS was estimated to be 1.0−3.8×105 Dalton, and the distribution of the molecular weight was very homogeneous (polydispersity index =1.32). The EPS solution showed a characteristic of pseudoplastic non-Newtonian fluid at a concentration >2.0% in distilled water. The maximum EPS production was obtained when the strain was grown on glucose (30 g/L). Ammonium sulfate was the best suitable nitrogen source for EPS production. The highest yield of EPS was obtained at a carbon to nitrogen ratio of 15. The EPS synthesis was activated at the acidic range of pH 3.0–5.0 and increased when the pH of the culture broth decreased naturally to <2.0 during the fermentation. When the yeast was grown on glucose (30 g/L) and ammonium sulfate (2 g/L) at 22°C at an initial pH of 4.0, EPS production was maximized (4.0 g/L), and the glucose-based production yield coefficient and carbon-based production yield coefficient were 0.30 g of EPS/g of glucose and 0.34 g (carbon of EPS)/g (carbon of glucose), respectively.  相似文献   

8.
Gamma radiolysis of oxygenated 1–10 mM azide solutions was carried out at various pH values. In oxygenated 10 mM azide solutions, H2O2 and NO 2 were observed as radiolytic products while NH3 was not. The concentration of H2O2 reached its maximum level at a dose of 1 kGy, whereas NO 2 yield increased non-linearly beyond 2 kGy in this system. Both in aerated and oxygenated systems, G(NO 2 ) and G(H2O2) were found to vary with N 3 concentration. The yield of NO 2 was found to be dependent on both dose rate and pH. On pulse radiolysis, NO 2 was found as a radiolytic product in aerated 1 mM azide solution at pH 6.8. In this system the intermediate generated exhibits absorbance around 250 nm. The overall results obtained during the present study reveal that in presence of both reducing radical (mainly e aq ) and oxygen, N 3 produced an intermediate possibly NH2O 2 radical, which is the prime source for NO 2 generation.  相似文献   

9.
Oxidation of aqueous Co(NO3)2–ethylenediamine (En) solutions with air oxygen was investigated at 20 °C and pH 5.2–7.0, with and without mechanical stirring, by measuring the CoII concentration, pH and redox potential on an Au electrode. In most cases, the oxidation rate was proportional to the concentration of CoEn 2+ n (n = 2, 3) complexes, and the influence of the solution pH on the rate of reaction was accounted for by the pH dependence of the CoII complex distribution. It was found that sulphate inhibits and bromide accelerates the oxidation process. Possible oxidation routes are discussed. The oxidation process is limited to some extent by O2 transport from the air to the bulk solution.  相似文献   

10.
A very sensitive method for the spectrophotometric determination of manganese is reported. To the sample is added triethanolamine (TEA) and sodium hydroxide to give a pH above 11; after atmospheric oxidation of manganese(II) to the green manganese(III)—TEA complex, sodium pyrophosphate is added and the solution is acidified. Manganese(III) thus forms a complex with pyrophosphate. Then o-tolidine is added and is oxidized in a 2e step to the intensely yellow quinonediimine, while manganese(III) is reduced to manganese(II). The absorbance is measured at 440 nm. The calibration curve is linear up to 1.6 μg Mn ml-1 in the final solution; the limit of determination is 0.2 μg Mn ml-1. For the 20-cm path cell, the respective data are 45 ng Mn ml-1 and 2 ng Mn ml-1. The only severe interferences are strong oxidants like dichromate or cerium(IV), which are readily reduced with sulfurous acid. Vanadium in amounts up to 2–3 times that of manganese can be dealt with by an appropriate blank solution; larger amounts of vanadium must be removed e.g. by a cupferron extraction.  相似文献   

11.
Physical and chemical characterization of algae Gelidium particles shows a gel structure, with two major binding groups, carboxylic and hydroxyl groups, with an affinity constant distribution for protons, well described by a Quasi-Gaussian distribution suggested by Sips. A continuous model, considering a heterogeneous distribution of the carboxylic groups, determined by potentiometric titration experiments, was able to predict equilibrium data at different pH. The metal uptake capacity decreases with the solution pH, suggesting that competition exists between hydrogen ions, present in high concentrations for low pH values, and metal ions. For high ionic strengths, adsorption sites will be surrounded by counter ions and partially lose their charge, which weakens the contribution of the electrostatic binding and decreases the overall adsorption. A small influence of the temperature in the adsorption process was observed. Batch kinetic experiments were also performed, at different pH values, and results were well fitted by a mass transfer model, considering the intraparticle diffusion resistance given by the linear driving force model (LDF). Continuous stirred adsorber (CSTA) and packed bed column configurations were also tested for metal adsorption. The biosorbent regeneration was achieved by contacting it with strong acid (0.1 M HNO3). A mass transfer model was applied with success to describe the biosorption/desorption process in CSTA and packed bed column, considering the equilibrium given by the Langmuir equation/mass action law and film and intraparticle diffusion resistances.  相似文献   

12.
In this study, a facultative bacterium that converts fumarate to succinate at a high yield was isolated. The yield of biocon version was enhanced about 1.2 times by addition of glucose into culture medium at an initial concentration of 6 g/L. When the initial cell density was high (2 g/L), the succinate produced at pH 7.0 for initial fumarate concentrations of 30, 50, 80, and 100 g/L were 29.3, 40.9, 63.6, and 82.5 g/L, respectively, showing an increase with the initial fumarate concentration. The high yield of 96.8%/mole of fumarate in just 4 h was obtained at the initial fumarate concentration of 30 g/L. Comparing these values to those obtained with low cell culture (0.2 g/L), we found that the amount of succinate produced was similar, but the production rate in the high cell culture was about three times higher than was the case in the low cell culture. This strain converted fumarate to succinate at a rate of 3.5 g/L·h under the sparge of CO2.  相似文献   

13.
Gold catalysts, supported on a solid base of MgxAlO hydrotalcite, were prepared by a modified deposition precipitation method for CO selective oxidation. The preparation parameters and pretreatment of the catalysts were investigated. The pH and the HAuCl4 concentration in the initial solution, and the Mg/Al molar ratio of MgxAlO affected the pH in the final solution and determined the actual gold loading of the catalyst. The calcination temperatures of the MgxAlO support and the Au/MgxAlO catalyst dominated the Au3+/Au0 ratio on the catalyst. The pretreatment of the catalyst as well as the gold loading and the Au3+/Au0 ratio, critically determined the activity of the catalyst for CO selective oxidation. Based on XPS and in situ DR-FTIR analyses, a mechanism for CO selective oxidation on 2%Au/Mg2AlO was proposed. The hydroxyl group on Mg2AlO also participated in the reaction.  相似文献   

14.
The interference of eight components in the yield of sporulation and thermal resistance to moist heat (121°C) of Bacillus stearothermophilus spores suspended in 0.02 M calcium acetate solution and inoculated on paper strips previously treated with calcium acetate/calcium hydroxide was studied. The spore yield of 1.0×108/mL was developed at 62°C in 17 media containing different concentrations of d-glucose, sodium chloride, l-glutamic acid, yeast extract, peptone, manganese sulfate, potassium phosphate, and ammonium phosphate. The combined effects of yeast extract, peptone, and glucose contributed positively to the spore yield and to the stability of the thermal resistance of both spores in suspension and on strips.  相似文献   

15.
Summary New column-packing materials specially designed for the HPLC analysis of basic compounds have been tested for the analysis ofCatharanthus alkaloids. Mobile phase optimization was performed for each column tested. The influence of mobile phase pH, nature and content of the organic modifier and salt concentration on retention, selectivity and resolution was studied. An important factor in the separation proved to be the pH of the eluent, because of the widely different pK a values of the analytes. Complete separation was easily achieved on ODS columns, but polymeric materials also gave acceptable results. Presented at the 21st ISC held in Stuttgart, Germany, 15th–20th September, 1996  相似文献   

16.
Tohru Ikeya  Naho Horimoto 《Talanta》2009,79(3):818-823
A stable and highly sensitive HPLC method for uranine has been developed. Because of unstableness of silica-based octadecyl-C18 columns at high pH condition, a reversed phase HPLC analysis under alkaline conditions has not necessarily taken as a usual method. However, the application for uranine seems to be advantageous, since the fluorescence yield of uranine is markedly enhanced at high pH condition. The detection limit of the HPLC system was 0.9 pg. The analytical consideration was also paid for the solid phase extraction (SPE) prior to the HPLC analysis with careful consideration of the recently revised pKa values of uranine. The recovery rate of uranine by SPE was found to depend on the sample volume and a few ml of seawater was applied to SPE in order to maintain the recovery rate during SPE. A combination of HPLC and SPE methods achieved detection of uranine at concentrations as low as 0.2 ng l−1 (0.5 pM), which was comparable to the background concentration of uranine in coastal water off Japan. For the practical use of the detected tracer-uranine concentration values after substantial duration after release, the photodegradation of uranine in surface water was also evaluated in terms of incident solar radiation dose as an exponential rate constant of −0.135 mol photon−1 m2.  相似文献   

17.
Single-domain manganese ferrite nanoparticles have been synthesized with narrow particle size distribution using the combustion technique. Influence of fuel ratios on the as-prepared powders were characterized by XRD, SEM, VSM, N2 adsorption at −196 °C and conversion of cyclohexene at 200–400 °C. Ratios of fuel to cations were maintained variously at 0.0, 0.67, 1.33 and 2.67.The fuel to cations ratio of 2.67 gives better yield in the formation of nanocrystalline Mn ferrite and single-domain particles with a narrow range of size distribution. Maximum magnetization and coercivity values of the investigated ferrite are also greater for the ratio of 2.67. These values measured at room temperature are found to be 68.58 emu/g and 62.57 Oe, respectively. The BET surface area of the investigated solids was found to decrease by increasing the ratio between fuel and cations due to increasing the flame temperature. However, this treatment resulted in a significant increase in catalytic activity of the as-synthesized solids. All solids investigated behaved as dehydrogenation catalysts. The change in fuel/cations ratios did not alter the mechanism of dehydrogenation of cyclohexene, but increased the concentration of active sites involved in the catalyzed reaction.  相似文献   

18.
A novel potent protease, Urechis unicinctus fibrinolytic enzyme (UFE), was first discovered by our laboratory. In this study, we further investigated the enzymatic properties and dynamic parameters of UFE. As a low molecular weight protein, UFE appeared to be very stable to heat and pH. When the temperature was <50°C, the remnant enzyme activity remained almost unchanged, but when the temperature was raised to 60#x00B0;C the remnant enzyme activity began to decrease rapidly. UFE was quite stable in a pH range of 3.0–12.0, especially at slightly alkaline pH values. Mn2+, Cu2+, and Fe2+ ions were activators of UFE, whereas Fe3+ and Ag+ ions were inhibitors. Fe2+ ion along with Fe3+ ion might regulate UFE activity in vivo. The optimum pH and temperature of UFE were about 8.0 and 50°C, respectively. When using casein as substrate and a substrate concentration <0.1% casein (w/v), the reaction velocity was increased with substrate concentration. Also when using casein as substrate, the determined K m and V max of UFE were 0.5298 mg/mL and 3.0845 mol of l-tyrosine equivalent, respectively. Our systematic research results are significant when UFE is applied for medical and industrial purposes.  相似文献   

19.
Ohura H  Ishibashi Y  Imato T  Yamasaki S 《Talanta》2003,60(1):177-184
A highly sensitive potentiometric flow injection analysis method for the determination of manganese(II), utilizing a redox reaction with hexacyanoferrate(III) in near neutral media containing ammonium citrate is described. The analytical method is based on the detection of the change in potential of a flow-through type redox electrode detector, resulting from the composition change of an [Fe(CN)6]3−-[Fe(CN)6]4− potential buffer solution. A linear relationship between the potential change (peak height) and the concentration of manganese(II) was found. Manganese(II) in a wide concentration range from 10−4 to 10−7 M could be determined by appropriately altering the concentration of the potential buffer from 10−3 to 10−5 M. The lower detection limit of manganese(II) was determined to be 1×10−7 M. The sampling rate and relative standard deviation were 20 h−1 and 1.9% (n=8) for 6×10−6 M manganese(II), respectively. The proposed method was successfully applied to the determination of manganese(II) in actual soil samples obtained from tea fields. Analytical results obtained by the proposed method were in good agreement with those obtained by an atomic absorption spectrophotometric method.  相似文献   

20.
Halka Bilinski 《Polyhedron》1983,2(5):353-358
The precipitation of manganese from aqueous solution of manganese perchlorate and sodium pyrophosphate was investigated in a broad concentration range of both precipitation components and at various pH values, at 295 K and I = 0.5 mol dm?3. Tyndallometric technique was used. A soluble range has been observed in ten-fold excess of pyrophosphate and at 7 < pH < 10, where manganese forms complex with pyrophosphate. In the precipitation range the following precipitates were identified: Na2MnP2O7, Mn2P2O7 and MnOx. Quantitative solubility experiments have been performed at I ≈ 0 mol dm?3. From experimental data the following values for equilibrium constants have been obtained:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号