首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Di‐ and tri‐phosphate nucleotides are essential cofactors for many proteins, usually in an Mg2+‐bound form. Proteins like GTPases often detect the difference between NDP and NTP and respond by changing conformations. To study such complexes, simple, fixed charge force fields have been used, which allow long simulations and precise free energy calculations. The preference for NTP or NDP binding depends on many factors, including ligand structure and Mg2+ coordination and the changes they undergo upon binding. Here, we use a simple force field to examine two Mg2+ coordination modes for the unbound GDP and GTP: direct, or “Inner Sphere” (IS) coordination by one or more phosphate oxygens and indirect, “Outer Sphere” (OS) coordination involving one or more bridging waters. We compare GTP: and GDP:Mg binding with OS and IS coordination; combining the results with experimental data then indicates that GTP prefers the latter. We also examine different kinds of IS coordination and their sensitivity to a key force field parameter: the optimal Mg:oxygen van der Waals distance Rmin. Increasing Rmin improves the Mg:oxygen distances, the GTP: and GDP:Mg binding affinities, and the fraction of GTP:Mg with β + γ phosphate coordination, but does not improve or change the GTP/GDP affinity difference, which remains much larger than experiment. It has no effect on the free energy of GDP binding to a GTPase. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
The Wacker process consists of the oxidation of ethylene catalyzed by a PdII complex. The reaction mechanism has been largely debated in the literature; two modes for the nucleophilic addition of water to a Pd‐coordinated alkene have been proposed: syn‐inner‐ and anti‐outer‐sphere mechanisms. These reaction steps have been theoretically evaluated by means of ab initio molecular dynamics combined with metadynamics by placing the [Pd(C2H4)Cl2(H2O)] complex in a box of water molecules, thereby resembling experimental conditions at low [Cl?]. The nucleophilic addition has also been evaluated for the [Pd(C2H4)Cl3]? complex, thus revealing that the water by chloride ligand substitution trans to ethene is kinetically favored over the generally assumed cis species in water. Hence, the resulting trans species can only directly undertake the outer‐sphere nucleophilic addition, whereas the inner‐sphere mechanism is hindered since the attacking water is located trans to ethene. In addition, all the simulations from the [Pd(C2H4)Cl2(H2O)] species (either cis or trans) support an outer‐sphere mechanism with a free‐energy barrier compatible with that obtained experimentally, whereas that for the inner‐sphere mechanism is significantly higher. Moreover, additional processes for a global understanding of the Wacker process in solution have also been identified, such as ligand substitutions, proton transfers that involve the aquo ligand, and the importance of the trans effect of the ethylene in the nucleophilic addition attack.  相似文献   

3.
The selective phosphate‐sensing property of a bis‐heteroleptic RuII complex, 1 [PF6]2, which has a halogen‐bonding iodotriazole unit, is demonstrated and is shown to be superior to its hydrogen‐bonding analogue, 2 [PF6]2. Complex 1 [PF6]2, exploiting halogen‐bonding interactions, shows enhanced phosphate recognition in both acetonitrile and aqueous acetonitrile compared with its hydrogen‐bonding analogue, owing to considerable amplification of the RuII‐center‐based metal‐to‐ligand charge transfer (MLCT) emission response and luminescence lifetime. Detailed solution‐state studies reveal a higher association constant, lower limit of detection, and greater change in lifetime for complex 1 in the presence of phosphates compared with its hydrogen‐bonding analogue, complex 2 . The 1H NMR titration study with H2PO4? ascertains that the binding of H2PO4? occurs exclusively through halogen‐bonding or hydrogen‐bonding interactions in complexes 1 [PF6]2 and 2 [PF6]2, respectively. Importantly, the single‐crystal X‐ray structure confirms the first ever report on metal‐assisted second‐sphere recognition of H2PO4? and H2P2O72? with 1 through a solitary C?I???anion halogen‐bonding interaction.  相似文献   

4.
《化学:亚洲杂志》2017,12(22):2899-2903
Boron‐based binary cluster Mg2B8 is shown to adopt a compass‐like structure via computational global searches, featuring an Mg2 dimer as the needle and a disk‐shaped B8 molecular wheel as baseplate. The nanocompass has a diameter of 0.35 nm. Born–Oppenheimer molecular dynamics simulations indicate that Mg2B8 is structurally fluxional with the needle rotating freely on the baseplate, analogous to a functioning compass. The dynamics is readily initiated via a ultrasoft vibrational mode. The rotational barrier is only 0.1 kcal mol−1 at the single‐point CCSD(T) level. Chemical bonding analysis suggests that the cluster compass can be formulated as [Mg2]2+[B8]2−; that is, the baseplate and the needle are held together primarily through ionic interactions. The baseplate is doubly aromatic with π and σ sextets. The bonding pattern provides a dilute, continuous, and delocalized electron cloud, which underlies the dynamics of the nanocompass.  相似文献   

5.
The role of magnesium sulfate as an inhibitor of lipid peroxidation has been poorly understood, although this salt has been intensively used in a wide range of diseases related to lipid peroxidation, for example, preeclampsia. Classical molecular dynamics (MD) simulations of a lipid bilayer in the presence of ?OH radicals and MgSO4 were performed to study their effects on membrane properties. Additionally, quantum chemistry (QC) calculations for MgSO4, ?OH, MgSO4?OH, [MgSO4(H2O)4], and [MgSO4(H2O)4?OH] were performed to analyze the interactions between ?OHMg. The MD results showed that the Mg salt is hydrated, forming a contact ion pair (CIP) that is adsorbed on the membrane surface close to phosphate groups. Comparisons of MD calculations for Mg? O distances indicate good agreement with theoretical QC and experimental studies. MD results also reveal that MgSO4 increases the thickness and the compressibility modulus of the membrane, indicating that it is less compressible. In contrast, DFT calculations show important ?OHMg? SO4 interactions in hydrated systems that inhibit the radical action by resonance in the group (smearing the spin density). These results, together with the reported experimental findings of ?OH high mobility in water and fast water exchange in Mg+2, may explain the MgSO4 protective effect against lipid peroxidation on cellular membranes.  相似文献   

6.
The axial connection of flexible thioalkyls chains of variable length (n=1–12) within the segmental bis‐tridentate 2‐benzimidazole‐8‐hydroxyquinoline ligands [ L12 Cn?2 H]2? provides amphiphilic receptors designed for the synthesis of neutral dinuclear lanthanides helicates. However, the stoichiometric mixing of metals and ligands in basic media only yields intricate mixtures of poorly soluble aggregates. The addition of AgI in solution restores classical helicate architectures for n=3, with the quantitative formation of the discrete D3‐symmetrical [Ln2Ag2( L12 C3?2 H)3]2+ complexes at millimolar concentration (Ln=La, Eu, Lu). The X‐ray crystal structure supports the formation of [La2Ag2( L12 C3?2 H)3][OTf]2, which exists in the solid state as infinite linear polymers bridged by S‐Ag‐S bonds. In contrast, molecular dynamics (MD) simulations in the gas phase and in solution confirm the experimental diffusion measurements, which imply the formation of discrete molecular entities in these media, in which the sulfur atoms of each lipophilic ligand are rapidly exchanged within the AgI coordination sphere. Turned as a predictive tool, MD suggests that this AgI templating effect is efficient only for n=1–3, while for n>3 very loose interactions occur between AgI and the thioalkyl residues. The subsequent experimental demonstration that only 25 % of the total ligand speciation contributes to the formation of [Ln2Ag2( L12 C12?2 H)3]2+ in solution puts the bases for a rational approach for the design of amphiphilic helical complexes with predetermined molecular interfaces.  相似文献   

7.
We designed and synthesized self‐assembled bis‐PtII dimer 1? 4 BF4 with quino[8,7‐b][1,10]phenanthroline as an extended π‐face contact area, which acts as the first artificial receptor with high affinity toward iodinated aromatic compounds significantly based on noncovalent iodine ??? aromatic‐plane interactions in a “side‐on” fashion. Despite their structural similarity to a previously reported metallohost 2 4+ that bears 2,2′:6′,2′′‐terpyridine units, a dramatic change in selectivity toward substituted benzene derivatives was observed for 1 4+. 1H NMR spectroscopic titration revealed a high affinity of 1 4+ towards haloarenes, with exceptionally large association constants for 2‐iodophenol (Ka=16 000 M ?1) and 1,2‐diiodobenzene (Ka=21 000 M ?1), which are 93‐ and 140‐fold higher, respectively, than the values obtained for 2 4+. In addition, 1 4+ showed a remarkably high affinity and selectivity toward 2,6‐diiodophenol (Ka=35 000 M ?1), which is an important substructure of the thyroid hormone T4. X‐ray crystallography and theoretical calculations strongly suggest that “side‐on” iodine ??? aromatic‐plane interactions and π–π stacking contribute to the strong 1,2‐diiodobenzene and 2,6‐diiodophenol binding. The results obtained here give unique and valuable insight into the nature of halogen atom interactions in their “side‐on” region with an electropositive aromatic plane, which may provide useful guidance for designing artificial receptors for iodinated biomolecules.  相似文献   

8.
The photodissociation spectroscopy of weakly bonded bimolecular complexes can give important insight into fundamental molecular interactions and dynamics. We have applied these techniques to a study of metal ion‐ethylene interactions in the Mg+(3s)‐C2H4 and Al+(3s2)‐C2H4 π‐bonded complexes. Experimental work is supported by ab‐initio electronic structure calculations. These experiments allow us to explore and compare the chemical binding, electronic structure, and nonadiabatic dissociation dynamics of these complexes.  相似文献   

9.
The deposition of Cu2+ and Zn2+ from aqueous solution has been investigated by a combination of classical molecular dynamics, density functional theory, and a theory developed by the authors. For both cases, the reaction proceeds through two one‐electron steps. The monovalent ions can get close to the electrode surface without losing hydration energy, while the divalent ions, which have a stronger solvation sheath, cannot. The 4s orbital of Cu interacts strongly with the sp band and more weakly with the d band of the copper surface, while the Zn 4s orbital couples only to the sp band of Zn. At the equilibrium potential for the overall reaction, the energy of the intermediate Cu+ ion is only a little higher than that of the divalent ion, so that the first electron transfer can occur in an outer‐sphere mode. In contrast, the energy of the Zn+ ion lies too high for a simple outer‐sphere reaction to be favorable; in accord with experimental data this suggests that this step is affected by anions.  相似文献   

10.
We study the structures of the Hras‐GTP complex and the Hras‐GDP complex in water to investigate the mechanism of GTP hydrolysis of the Hras‐GTP complex. We performed molecular dynamics simulations of these complexes to investigate the structures of these complexes using the potential parameters of AMBER ff03 and our potential parameters around Mg2+. Our simulations show that the averaged structure differences between the Hras‐GTP complex and Hras‐GDP complex are found in the switch I and II regions. In particular, in the switch II region, the α2 ‐ helix of Hras‐GDP is shorter than the α2 ‐ helix of Hras‐GTP. The averaged number of water molecules in the first hydration sphere in Hras‐GDP complex is larger than that in Hras‐GTP complex. The occurrence ratio of the duration time of waters in the first hydration sphere of PA has long tail both in Hras‐GTP and in Hras‐GDP. In Hras‐GDP complex, β‐phosphate is hard to be hydrolyzed, while the number of waters in the first hydration sphere is larger than those in Hras‐GTP. This suggests that there is a special direction for the hydrolysis. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
The molecular interactions between the CeIV‐substituted Keggin anion [PW11O39Ce(OH2)4]3? ( CeK ) and hen egg‐white lysozyme (HEWL) were investigated by molecular dynamics simulations. The analysis of CeK was compared with the CeIV‐substituted Keggin dimer [(PW11O39)2Ce]10? ( CeK2 ) and the ZrIV‐substituted Lindqvist anion [W5O18Zr(OH2)(OH)]3? ( ZrL ) to understand how POM features such as shape, size, charge, or type of incorporated metal ion influence the POM???protein interactions. Simulations revealed two regions of the protein in which the CeK anion interacts strongly: cationic sites formed by Arg21 and by Arg45 and Arg68. The POMs chiefly interact with the side chains of the positively charged (arginines, lysines) and the polar uncharged residues (tyrosines, serines, aspargines) via electrostatic attraction and hydrogen bonding with the oxygen atoms of the POM framework. The CeK anion shows higher protein affinity than the CeK2 and ZrL anions, because it is less hydrophilic and it has the right size and shape for establishing interactions with several residues simultaneously. The larger, more negatively charged CeK2 anion has a high solvent‐accessible surface, which is sub‐optimal for the interaction, while the smaller ZrL anion is highly hydrophilic and cannot efficiently interact with several residues simultaneously.  相似文献   

12.
The atomistic mechanisms of Li+ ion mobility/conductivity in Li7?xPS6?xIx argyrodites are explored from both experimental and theoretical viewpoints. Ionic conductivity in the title compound is associated with a solid–solid phase transition, which was characterised by low‐temperature differential scanning calorimetry, 7Li and 127I NMR investigations, impedance measurements and molecular dynamics simulations. The NMR signals of both isotopes are dominated by anisotropic interactions at low temperatures. A significant narrowing of the NMR signal indicates a motional averaging of the anisotropic interactions above 177±2 K. The activation energy to ionic conductivity was assessed from both impedance spectroscopy and molecular dynamics simulations. The latter revealed that a series of interstitial sites become accessible to the Li+ ions, whilst the remaining ions stay at their respective sites in the argyrodite lattice. The interstitial positions each correspond to the centres of tetrahedra of S/I atoms, and differ only in terms of their common corners, edges, or faces with adjacent PS4 tetrahedra. From connectivity analyses and free‐energy rankings, a specific tetrahedron is identified as the key restriction to ionic conductivity, and is clearly differentiated from local mobility, which follows a different mechanism with much lower activation energy. Interpolation of the lattice parameters as derived from X‐ray diffraction experiments indicates a homogeneity range for Li7?xPS6?xIx with 0.97≤x≤1.00. Within this range, molecular dynamics simulations predict Li+ conductivity at ambient conditions to vary considerably.  相似文献   

13.
Many details pertaining to the formation and interactions of protein aggregates associated with neurodegenerative diseases are invisible to conventional biophysical techniques. We recently introduced 15N dark‐state exchange saturation transfer (DEST) and 15N lifetime line‐broadening to study solution backbone dynamics and position‐specific binding probabilities for amyloid β (Aβ) monomers in exchange with large (2–80 MDa) protofibrillar Aβ aggregates. Here we use 13Cmethyl DEST and lifetime line‐broadening to probe the interactions and dynamics of methyl‐bearing side chains in the Aβ‐protofibril‐bound state. We show that all methyl groups of Aβ40 populate direct‐contact bound states with a very fast effective transverse relaxation rate, indicative of side‐chain‐mediated direct binding to the protofibril surface. The data are consistent with position‐specific enhancements of 13Cmethyl‐${R{{{\rm tethered}\hfill \atop 2\hfill}}}$ values in tethered states, providing further insights into the structural ensemble of the protofibril‐bound state.  相似文献   

14.
A better understanding of the solution chemistry of the lanthanide (Ln) salts in water would have wide ranging implications in materials processing, waste management, element tracing, medicine and many more fields. This is particularly true for minerals processing, given governmental concerns about lanthanide security of supply and the drive to identify environmentally sustainable processing routes. Despite much effort, even in simple systems, the mechanisms and thermodynamics of LnIII association with small anions remain unclear. In the present study, molecular dynamics (MD), using a newly developed force field, provide new insights into LnCl3(aq) solutions. The force field accurately reproduces the structure and dynamics of Nd3+, Gd3+ and Er3+ in water when compared to calculations using density functional theory (DFT). Adaptive-bias MD simulations show that the mechanisms for ion pairing change from dissociative to associative exchange depending upon cation size. Thermodynamics of association reveal that whereas ion pairing is favourable, the equilibrium distribution of species at low concentration is dominated by weakly bound solvent-shared and solvent-separated ion pairs, rather than contact ion pairs, reconciling a number of contrasting observations of LnIII–Cl association in the literature. In addition, we show that the thermodynamic stabilities of a range of inner sphere and outer sphere coordination complexes are comparable and that the kinetics of anion binding to cations may control solution speciation distributions beyond ion pairs. The techniques adopted in this work provide a framework with which to investigate more complex solution chemistries of cations in water.  相似文献   

15.
A detailed reaction mechanism is proposed for the hydrolysis of the phosphoester bonds in the DNA model substrate bis(4‐nitrophenyl) phosphate (BNPP) in the presence of the ZrIV‐substituted Keggin type polyoxometalate (Et2NH2)8[{α‐PW11O39Zr(μ‐OH) (H2O)}2] ? 7 H2O (ZrK 2:2) at pD 6.4. Low‐temperature 31P DOSY spectra at pD 6.4 gave the first experimental evidence for the presence of ZrK 1:1 in fast equilibrium with ZrK 2:2 in purely aqueous solution. Moreover, theoretical calculations identified the ZrK 1:1 form as the potentially active species in solution. The reaction intermediates involved in the hydrolysis were identified by means of 1H/31P NMR studies, including EXSY and DOSY NMR spectroscopy, which were supported by DFT calculations. This experimental/theoretical approach enabled the determination of the structures of four intermediate species in which the starting compound BNPP, nitrophenyl phosphate (NPP), or the end product phosphate (P) is coordinated to ZrK 1:1. In the proposed reaction mechanism, BNPP initially coordinates to ZrK 1:1 in a monodentate fashion, which results in hydrolysis of the first phosphoester bond in BNPP and formation of NPP. EXSY NMR studies showed that the bidentate complex between NPP and ZrK 1:1 is in equilibrium with monobound and free NPP. Subsequently, hydrolysis of NPP results in P, which is in equilibrium with its monobound form.  相似文献   

16.
The synthesis, crystal structure, and magnetic properties (from a combined experimental and First‐Principles Bottom‐Up theoretical study) of the new compound catena‐dichloro(2‐Cl‐3Mpy)copper(II), 1 , [2‐Cl‐3Mpy=2‐chloro‐3‐methylpyridine] are described and rationalized. Crystals of 1 present well isolated magnetic 1D chains (no 3D order was experimentally observed down to 1.8 K) and magnetic frustration stemming from competing ferromagnetic nearest‐neighbor (JNN) interactions and antiferromagnetic next‐nearest neighbor (JNNN) interactions, in which α=JNNN/JNN <?0.25. These magnetic interactions give rise to a unique magnetic topology: a two‐leg zigzag ladder composed of edge‐sharing up‐down triangles with antiferromagnetic interactions along the rails and ferromagnetic interactions along the zigzag chain that connects the rails. Crystals of 1 also present a random distribution of the 2‐Cl‐3Mpy groups, which are arranged in two different orientations, each with a 50 % occupancy. This translates into a random static structural disorder within each chain by virtue of which the value of the JNN magnetic interactions can randomly take one of the following three values: 53, 36, and 16 cm?1. The structural disorder does not affect the JNNN value, which in all cases is approximately ?9 cm?1. A proper statistical treatment of this disorder provides a computed magnetic susceptibility curve that reproduces the main features of the experimental data.  相似文献   

17.
The gas‐phase dehydration–rearrangement (DR) reactions of protonated alcohols [Me2(R)CCH(OH2)Me]+ [R=Me ( ME ), Et ( ET ), and iPr ( I‐PR )] were studied by using static approaches (intrinsic reaction coordinate (IRC), Rice–Ramsperger–Kassel–Marcus theory) and dynamics (quasiclassical trajectory) simulations at the B3LYP/6‐31G(d) level of theory. The concerted mechanism involves simultaneous water dissociation and alkyl migration, whereas in the stepwise reaction pathway the dehydration step leads to a secondary carbocation intermediate followed by alkyl migration. Internal rotation (IR) can change the relative position of the migrating alkyl group and the leaving group (water), so distinct products may be obtained: [Me(R)CCH(Me)Me ??? OH2]+ and [Me(Me)CCH(R)Me ??? OH2]+. The static approach predicts that these reactions are concerted, with the selectivity towards these different products determined by the proportion of the conformers of the initial protonated alcohols. These selectivities are explained by the DR processes being much faster than IR. These results are in direct contradiction with the dynamics simulations, which indicate a predominantly stepwise mechanism and selectivities that depend on the alkyl groups and dynamics effects. Indeed, despite the lifetimes of the secondary carbocations being short (<0.5 ps), IR can take place and thus provide a rich selectivity. These different selectivities, particularly for ET and I‐PR , are amenable to experimental observation and provide evidence for the minor role played by potential‐energy surface and the relevance of the dynamics effects (non‐IRC pathways, IR) in determining the reaction mechanisms and product distribution (selectivity).  相似文献   

18.
The HeH+ molecular ion under an ultrashort magnetic field on the order of 109 G is investigated through quantum fluid dynamics and a current‐density functional theory (CDFT) based approach, employing a vector exchange–correlation (XC) potential which depends on the electronic charge‐density as well as on the current‐density. The behavior of the exchange and correlation energies of the HeH+ ion is analyzed and compared with those obtained using an approach based on the time‐dependent density functional theory (TD‐DFT) under similar computational constraints but employing a scalar XC potential dependent only on the electronic charge‐density. The CDFT‐based approach yields exchange and correlation energies as well as TD electronic charge‐densities drastically different from those obtained using the TD‐DFT‐based approach particularly, at typical TD magnetic field strengths. This is attributed to the nonadiabatic effects induced by the vector XC potential of the CDFT in the oscillating charge‐density of the HeH+ ion, which are further explained in the terminology of quantum fluid dynamics. The vector XC potential of the CDFT‐based approach is observed to augment the magnetic interactions in the H2 molecule and in the He ion, whereas it opposes the magnetic interactions in the HeH+ ion particularly, at the intermediate magnetic field strengths. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
We performed an ab initio molecular dynamics simulation of the paramagnetic transition metal ion Cr3+ in aqueous solution. Isotropic hyperfine coupling constants between the electron spin of the chromium ion and nuclear spins of all water molecules have been determined for instantaneous snapshots extracted from the trajectory. The coupling constant of first sphere oxygen, A iso(17OI)=1.9±0.3 MHz, is independent on Cr–OI distance but increases with the tilt angle for the water molecule approaching 180°. First sphere hydrogen spins have A iso(1 HI)=2.1±0.2 MHz which decreases with increasing tilt angle and shows a Cr–HI distance dependence. The hyperfine coupling constants for second sphere 17O is negative and an order of magnitude smaller (−0.20±0.02 MHz) compared to first sphere.  相似文献   

20.
Compositional effects on the charge‐transport properties of electrolytes for batteries based on room‐temperature ionic liquids (RTILs) are well‐known. However, further understanding is required about the molecular origins of these effects, in particular regarding the replacement of Li by Na. In this work, we investigate the use of RTILs in batteries, by means of both classical molecular dynamics (MD), which provides information about structure and molecular transport, and ab initio molecular dynamics (AIMD), which provides information about structure. The focus has been placed on the effect of adding either Na+ or Li+ to 1‐methyl‐1‐butyl‐pyrrolidinium [C4PYR]+ bis(trifluoromethanesulfonyl)imide [Tf2N]?. Radial distribution functions show excellent agreement between MD and AIMD, which ensures the validity of the force fields used in the MD. This is corroborated by the MD results for the density, the diffusion coefficients, and the total conductivity of the electrolytes, which reproduce remarkably well the experimental observations for all studied Na/Li concentrations. By extracting partial conductivities, it is demonstrated that the main contribution to the conductivity is that of [C4PYR]+ and [Tf2N]?. However, addition of Na+/Li+, although not significant on its own, produces a dramatic decrease in the partial conductivities of the RTIL ions. The origin of this indirect effect can be traced to the modification of the microscopic structure of the liquid as observed from the radial distribution functions, owing to the formation of [Na(Tf2N)n](n?1)? and [Li(Tf2N)n](n?1)? clusters at high concentrations. This formation hinders the motion of the large ions, hence reducing the total conductivity. We demonstrate that this clustering effect is common to both Li and Na, showing that both ions behave in a similar manner at a microscopic level in spite of their distinct ionic radii. This is an interesting finding for extending Li‐ion and Li‐air technologies to their potentially cheaper Na‐based counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号